Geometric hydrodynamics and Hamiltonian structures

几何流体动力学和哈密顿结构

基本信息

  • 批准号:
    RGPIN-2019-05209
  • 负责人:
  • 金额:
    $ 3.06万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Geometric hydrodynamics is a young branch of mathematics which studies fluid motion by developing the differential and symplectic geometry on infinite-dimensional configuration spaces. The hydrodynamical Euler equations for compressible and incompressible fluids, as well as their relatives, describe a variety of physical phenomena, from atmospheric flows and ocean currents to magnetic fields in tokamaks and stars. They share many similarities including Hamiltonian structures, symmetries and conservation laws, geometric formulation, etc. The proposed research program is aimed to contribute toward solution of key problems of fluid dynamics, such as the emergence of turbulence and singularity formation, by exploring the geometric and group-theoretical approaches to fluids. It focuses on the following related projects. The proposal's first goal is to vastly expand the recently introduced geometric framework of Newton's equations on infinite-dimensional configuration spaces of diffeomorphisms and probability densities. It already encompasses several important PDEs of hydrodynamical origin, including various compressible fluids and the Schroedinger-type equations. The discovered Kahler property of the Madelung transform between such equations and corresponding phase spaces indicated a much closer connection of quantum mechanics and geometric hydrodynamics than was previously recognized. I hope to shed new light on recently discovered hydrodynamical quantum analogues. Another direction of research is to extend Arnold's geodesic approach from Lie groups to Lie groupoids. While Arnold's approach is indispensable for the study of conservation laws and stability in hydrodynamics, its scope of applicability was limited to systems with symmetry groups. I am going to extend this to a much broader class of systems of hydrodynamical origin by using Lie groupoid structures, to derive the Kelvin-Helmholtz instabilities of vortex sheets from this Hamiltonian approach, to study a relation to metrics on shape spaces, as well as to use this technique in order to obtain existence and uniqueness results for the Euler equation with discontinuous initial data. I also plan to broaden the study of integrable and non-integrable families of higher-dimensional generalizations of pentagram maps. The appearance of Boussinesq-type equations and the KdV hierarchy in continuous limits of such maps indicates a geometrically natural way to discretize those well-known Hamiltonian PDEs of hydrodynamical origin, while preserving their main structures. I plan to find a precise border of integrability and non-integrability for such discrete Hamiltonian maps. A related more fundamental goal is a rigorous proof of non-integrability of 2D ideal hydrodynamics.
几何流体力学是数学的一个年轻的分支,它通过发展无穷维位形空间上的微分几何和辛几何来研究流体运动。可压缩和不可压缩流体的流体动力学欧拉方程及其相关方程描述了各种物理现象,从大气流动和洋流到托卡马克和恒星中的磁场。它们有许多相似之处,包括哈密顿结构,对称性和守恒定律,几何公式等,拟议的研究计划旨在通过探索几何和群论方法来解决流体动力学的关键问题,如湍流的出现和奇点的形成。它侧重于以下相关项目。 该提案的第一个目标是极大地扩展最近引入的几何框架的牛顿方程的无限维配置空间的同构和概率密度。它已经包含了几个重要的偏微分方程的流体动力学起源,包括各种可压缩流体和薛定谔型方程。在这些方程和相空间之间发现的马德隆变换的卡勒性质表明量子力学和几何流体力学之间的联系比以前认识到的要紧密得多。我希望对最近发现的流体力学量子类似物有新的了解。 另一个研究方向是将Arnold的测地线方法从李群推广到李群胚。虽然阿诺德的方法是必不可少的研究守恒定律和稳定性的流体动力学,其适用范围仅限于系统的对称群。我将扩展到一个更广泛的一类系统的流体动力学起源使用李群胚结构,推导出开尔文-亥姆霍兹不稳定性的涡面从这个哈密顿方法,研究的关系度量的形状空间,以及使用这种技术,以获得存在性和唯一性结果的欧拉方程的不连续的初始数据。 我还计划扩大研究的可积和不可积家庭的高维推广的五角星形地图。Boussinesq型方程和KdV层次结构在连续的限制,这样的地图的外观表示一个几何自然的方式来离散那些著名的哈密顿偏微分方程的流体动力学起源,同时保持其主要结构。我计划找到一个精确的边界的可积性和不可积的离散哈密顿映射。一个相关的更基本的目标是一个严格的证明不可积的二维理想流体力学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Khesin, Boris其他文献

Long‐diagonal pentagram maps
长对角五角星地图

Khesin, Boris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Khesin, Boris', 18)}}的其他基金

Geometric hydrodynamics and Hamiltonian structures
几何流体动力学和哈密顿结构
  • 批准号:
    RGPIN-2019-05209
  • 财政年份:
    2022
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric hydrodynamics and Hamiltonian structures
几何流体动力学和哈密顿结构
  • 批准号:
    RGPIN-2019-05209
  • 财政年份:
    2021
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric hydrodynamics and Hamiltonian structures
几何流体动力学和哈密顿结构
  • 批准号:
    RGPIN-2019-05209
  • 财政年份:
    2019
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of diffeomorphism groups and Hamiltonian systems
微分同胚群和哈密顿系统的几何
  • 批准号:
    RGPIN-2014-05036
  • 财政年份:
    2018
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of diffeomorphism groups and Hamiltonian systems
微分同胚群和哈密顿系统的几何
  • 批准号:
    RGPIN-2014-05036
  • 财政年份:
    2017
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of diffeomorphism groups and Hamiltonian systems
微分同胚群和哈密顿系统的几何
  • 批准号:
    RGPIN-2014-05036
  • 财政年份:
    2016
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of diffeomorphism groups and Hamiltonian systems
微分同胚群和哈密顿系统的几何
  • 批准号:
    RGPIN-2014-05036
  • 财政年份:
    2015
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of diffeomorphism groups and Hamiltonian systems
微分同胚群和哈密顿系统的几何
  • 批准号:
    RGPIN-2014-05036
  • 财政年份:
    2014
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Hamiltonian dynamics and infinte-dimensional Lie groups
哈密​​顿动力学和无限维李群
  • 批准号:
    194132-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual
Hamiltonian dynamics and infinte-dimensional Lie groups
哈密​​顿动力学和无限维李群
  • 批准号:
    194132-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于Hydrodynamics-Reaction Kinetics耦合模型的厌氧膨胀床反应器三相流场数值模拟及生态-水力响应机制解析
  • 批准号:
    51078108
  • 批准年份:
    2010
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidating Hydrodynamics at Confined Interfaces for Artificial Active Fluidics and Beyond
阐明人工主动流体学及其他领域的受限界面处的流体动力学
  • 批准号:
    MR/X03660X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Fellowship
Hydrodynamics of quantum fluids
量子流体的流体动力学
  • 批准号:
    DP240101033
  • 财政年份:
    2024
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Discovery Projects
CAREER: Collective hydrodynamics within viscous interfaces: activity and assembly in membranes and monolayers
职业:粘性界面内的集体流体动力学:膜和单层中的活性和组装
  • 批准号:
    2340415
  • 财政年份:
    2024
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: Enhanced Multiscale Approaches for Simulations of Multicomponent Fluids with Complex Interfaces using Fluctuating Hydrodynamics
RII Track-4:NSF:使用脉动流体动力学模拟具有复杂界面的多组分流体的增强多尺度方法
  • 批准号:
    2346036
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Standard Grant
Time-Dependent Hydrodynamics in Uniform Fermi Gases
均匀费米气体中的瞬态流体动力学
  • 批准号:
    2307107
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Continuing Grant
The development of new Smoothed Particle Hydrodynamics algorithm for dynamic fracture
用于动态断裂的新平滑粒子流体动力学算法的开发
  • 批准号:
    2894121
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Studentship
Clarification of Energy Mechanisms in Supercritical Accretion Flows on to Neutron Stars through Hydrodynamics and Radiative Transfer Simulations
通过流体动力学和辐射传输模拟阐明中子星超临界吸积流的能量机制
  • 批准号:
    22KJ0368
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSF-BSF: The Evolution of Hydrodynamics, Mechanics, & Prey Capture in the Feeding of Misfit Fish
NSF-BSF:流体动力学、力学、
  • 批准号:
    2326484
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Continuing Grant
The development of new Smoothed Particle Hydrodynamics algorithm for dynamic fracture
用于动态断裂的新平滑粒子流体动力学算法的开发
  • 批准号:
    2887693
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Studentship
The interaction of waves with seaweed farms: wave attenuation and intra-farm hydrodynamics
波浪与海藻养殖场的相互作用:波浪衰减和养殖场内的流体动力学
  • 批准号:
    2888992
  • 财政年份:
    2023
  • 资助金额:
    $ 3.06万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了