Geometry of diffeomorphism groups and Hamiltonian systems

微分同胚群和哈密顿系统的几何

基本信息

  • 批准号:
    RGPIN-2014-05036
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Ocean currents, fluid motions in rivers, atmospheric flows, and magnetic fields in tokamaks and stars are mathematically modelled by the hydrodynamical Euler equation and its relatives. While Euler-type equations arise in a broad range of physical phenomena, they share many similarities: Hamiltonian structure, a variety of conservation laws, geometric formulation, and symmetries related to particle relabelling (i.e. diffeomorphism action). The goal of the proposed research is to contribute toward understanding of two key problems of fluid dynamics: singularity formation and appearance of turbulence by exploring the geometric and group-theoretical approach to fluids. It is aimed at understanding of the robustness, accuracy, and predicting power of geometric infinite-dimensional mathematical models for wide range of hydrodynamical phenomena, from how reliable are weather forecasts to appearance of shock waves and behaviour of ocean currents.
托卡马克和恒星中的洋流、河流中的流体运动、大气流动和磁场都是由流体力学欧拉方程及其相关方程建立的数学模型。虽然欧拉型方程出现在广泛的物理现象中,但它们有许多相似之处:哈密顿结构,各种守恒定律,几何公式,以及与粒子重新标号有关的对称性(即微分同态作用)。这项研究的目的是通过探索流体的几何和群论方法,帮助理解流体动力学的两个关键问题:奇点的形成和湍流的出现。它的目的是了解几何无限维数学模型对广泛的水动力现象的稳健性、准确性和预测能力,从天气预报的可靠性到冲击波的出现和洋流的行为。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Khesin, Boris其他文献

Long‐diagonal pentagram maps
长对角五角星地图

Khesin, Boris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Khesin, Boris', 18)}}的其他基金

Geometric hydrodynamics and Hamiltonian structures
几何流体动力学和哈密顿结构
  • 批准号:
    RGPIN-2019-05209
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric hydrodynamics and Hamiltonian structures
几何流体动力学和哈密顿结构
  • 批准号:
    RGPIN-2019-05209
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric hydrodynamics and Hamiltonian structures
几何流体动力学和哈密顿结构
  • 批准号:
    RGPIN-2019-05209
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric hydrodynamics and Hamiltonian structures
几何流体动力学和哈密顿结构
  • 批准号:
    RGPIN-2019-05209
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of diffeomorphism groups and Hamiltonian systems
微分同胚群和哈密顿系统的几何
  • 批准号:
    RGPIN-2014-05036
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of diffeomorphism groups and Hamiltonian systems
微分同胚群和哈密顿系统的几何
  • 批准号:
    RGPIN-2014-05036
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of diffeomorphism groups and Hamiltonian systems
微分同胚群和哈密顿系统的几何
  • 批准号:
    RGPIN-2014-05036
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of diffeomorphism groups and Hamiltonian systems
微分同胚群和哈密顿系统的几何
  • 批准号:
    RGPIN-2014-05036
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Hamiltonian dynamics and infinte-dimensional Lie groups
哈密​​顿动力学和无限维李群
  • 批准号:
    194132-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Hamiltonian dynamics and infinte-dimensional Lie groups
哈密​​顿动力学和无限维李群
  • 批准号:
    194132-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
  • 批准号:
    2304841
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
CAREER: Mapping class groups, diffeomorphism groups, and moduli spaces
职业:映射类群、微分同胚群和模空间
  • 批准号:
    2236705
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
CAREER: New Directions in Foliation Theory and Diffeomorphism Groups
职业:叶状理论和微分同胚群的新方向
  • 批准号:
    2239106
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
Homotopy Theory of Foliations and Diffeomorphism Groups
叶状结构和微分同胚群的同伦理论
  • 批准号:
    2113828
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Index theorem relevant to the invariants of diffeomorphism groups
与微分同胚群不变量相关的指数定理
  • 批准号:
    20K03580
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of new turbulence analysis method by using diffeomorphism groups of Riemannian geometry
利用黎曼几何微分同胚群创建新的湍流分析方法
  • 批准号:
    18KK0379
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Diffeomorphism and homeomorphism groups of 4-manifolds and gauge theory for families
4流形的微分同胚和同胚群以及族规范理论
  • 批准号:
    19K23412
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Geometry of diffeomorphism groups and Hamiltonian systems
微分同胚群和哈密顿系统的几何
  • 批准号:
    RGPIN-2014-05036
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Homotopy Theory of Foliations and Diffeomorphism Groups
叶状结构和微分同胚群的同伦理论
  • 批准号:
    1810644
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
The index theorem involved with foliation and diffeomorphism groups
涉及叶状群和微分同胚群的指数定理
  • 批准号:
    17K05247
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了