Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry

走向复杂网络的数学描述:有效结构和潜在双曲几何

基本信息

  • 批准号:
    RGPIN-2019-05183
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Complex systems are a class of systems composed of multiple elements interacting in a nonsimple way such that collective behaviors emerge. These systems can be of various natures: biological (e.g., ecosystems, microbiomes, brains), technological (e.g., the Internet, power grids), or social (e.g., contact/social networks). Their emergent behaviors are equally diverse: the stability of ecosystems under external perturbations, the flocking behavior of birds, the cognitive functions of the brain, and the susceptibility of a population to sustain an epidemic of an infectious disease. Critically, these systems are fundamentally more than the sum of their parts, meaning that their collective dynamics are not encoded in the individual elements, but are the results of the complex structure of the interactions between these elements. Because these structures lie somewhere between order and randomness, they cannot easily be fully characterized by a concise set of synthesizing mathematical observables. As a result, the current state-of-the-art modeling approaches still require the full structure to be specified as an input. These extensive models, however, fail to provide insights on the role played by many structural features in the outcome of most dynamical process. Using concepts from Graph Theory, Statistical Physics and Non-linear Dynamics, this research program will develop new tools and techniques to unveil the role these structures play on the dynamics they support. A first approach consists in a dimensionality reduction technique that will systematically regroup elements with similar roles in a given dynamical process. Being agnostic to the topology, this method will allow us to probe these groups of elements and identify their common properties. The second theoretical approach will encode the complexity of these structures into the positions of their elements in a hyperbolic geometry. These maps will allow to understand the organization of these interactions at a glance, and will be leveraged to develop better forecasting models for the behavior of complex systems. Although firmly rooted in classical concepts from Theoretical Physics, the long-term objectives of this research program will have a lasting impact in many disciplines outside the realm of Physics---such as Biology, Epidemiology, Economics and Genetics---, hence broadening the scope of Physics research, and will help to shape the new transdisciplinary dynamics of modern academic research.
复杂系统是由多个元素以一种非简单的方式相互作用,从而产生集体行为的一类系统。这些系统可以具有各种性质:生物(例如,生态系统、微生物、大脑)、技术(例如,互联网、电网)或社会(例如,联系/社交网络)。它们的紧急行为也是多种多样的:生态系统在外部扰动下的稳定性,鸟类的集群行为,大脑的认知功能,以及种群维持传染病流行的敏感性。 关键的是,这些系统从根本上不仅仅是它们各部分的总和,这意味着它们的集体动力不是编码在单个元素中,而是这些元素之间相互作用的复杂结构的结果。因为这些结构介于有序性和随机性之间,所以很难用一组简明的综合数学观测数据来完全描述它们。因此,当前最先进的建模方法仍然需要将完整的结构指定为输入。然而,这些广泛的模型未能提供关于许多结构特征在大多数动态过程的结果中所起作用的洞察力。 利用图论、统计物理和非线性动力学的概念,这项研究计划将开发新的工具和技术,以揭示这些结构对它们所支持的动力学所起的作用。第一种方法是一种降维技术,它将在给定的动态过程中系统地重新组合具有相似角色的元素。由于与拓扑无关,这种方法将允许我们探测这些元素组并确定它们的共同属性。第二种理论方法将这些结构的复杂性编码为其元素在双曲几何中的位置。这些地图将允许一目了然地了解这些交互的组织,并将被用于为复杂系统的行为开发更好的预测模型。 尽管这一研究计划牢牢植根于理论物理学的经典概念,但该研究计划的长期目标将对物理学领域以外的许多学科产生持久的影响-生物学、流行病学、经济学和遗传学-从而拓宽物理学研究的范围,并将有助于塑造现代学术研究的新的跨学科动态。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Allard, Antoine其他文献

Heterogeneous bond percolation on multitype networks with an application to epidemic dynamics
  • DOI:
    10.1103/physreve.79.036113
  • 发表时间:
    2009-03-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Allard, Antoine;Noel, Pierre-Andre;Pourbohloul, Babak
  • 通讯作者:
    Pourbohloul, Babak
Structural preferential attachment: Stochastic process for the growth of scale-free, modular, and self-similar systems
  • DOI:
    10.1103/physreve.85.026108
  • 发表时间:
    2012-02-13
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Hebert-Dufresne, Laurent;Allard, Antoine;Dube, Louis J.
  • 通讯作者:
    Dube, Louis J.
Asymmetric percolation drives a double transition in sexual contact networks
Percolation and the Effective Structure of Complex Networks
  • DOI:
    10.1103/physrevx.9.011023
  • 发表时间:
    2019-02-05
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Allard, Antoine;Hebert-Dufresne, Laurent
  • 通讯作者:
    Hebert-Dufresne, Laurent
The effect of a prudent adaptive behaviour on disease transmission
  • DOI:
    10.1038/nphys3832
  • 发表时间:
    2016-11-01
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Scarpino, Samuel V.;Allard, Antoine;Hebert-Dufresne, Laurent
  • 通讯作者:
    Hebert-Dufresne, Laurent

Allard, Antoine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Allard, Antoine', 18)}}的其他基金

Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
  • 批准号:
    RGPIN-2019-05183
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
  • 批准号:
    RGPIN-2019-05183
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
  • 批准号:
    RGPIN-2019-05183
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
  • 批准号:
    DGECR-2019-00006
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Saving energy via drag reduction: a mathematical description of oscillatory flows
通过减阻节能:振荡流的数学描述
  • 批准号:
    EP/W021099/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
Undergraduate Fundamentals in Aging Research
衰老研究本科基础知识
  • 批准号:
    10729876
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
  • 批准号:
    RGPIN-2019-05183
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Development of mathematical and computer-assisted analysis towards comprehensive description of finite-time singularities
数学和计算机辅助分析的发展以全面描述有限时间奇点
  • 批准号:
    21H01001
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
  • 批准号:
    RGPIN-2019-05183
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
  • 批准号:
    RGPIN-2019-05183
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
  • 批准号:
    DGECR-2019-00006
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Towards a mathematical description of magneto-hydrodynamic turbulence
磁流体动力湍流的数学描述
  • 批准号:
    DE170100171
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Early Career Researcher Award
文脈を考慮した数学的知識へのアクセスに関する研究
考虑情境的数学知识获取研究
  • 批准号:
    14J09896
  • 财政年份:
    2014
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The Network Interface between Gene Regulation and Metabolism - Mathematical Description, Dynamics, and Evolutionary Design Principles
基因调控与代谢之间的网络接口 - 数学描述、动力学和进化设计原理
  • 批准号:
    202059689
  • 财政年份:
    2012
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了