Studying Human Dynamics at a Massive Scale: The Development and Assessment of a Distributed Approach for Effective Visualization of 100+ Million-Node Social Networks

大规模研究人类动力学:一亿节点社交网络有效可视化分布式方法的开发和评估

基本信息

  • 批准号:
    RGPIN-2019-05617
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Graphs of Online Social Networks (OSNs) - representing social media participants, their relationships and interactions - are an area of growing interest and significant investigation. Visual layouts of these graphs are a common tool used by researchers in a wide variety of fields to help understand network's underlying structures, form hypotheses, and communicate research results. Graphs can reveal information about the network's structure that may be difficult to determine through quantitative and qualitative methods alone. As OSNs are often very large, and growing ever larger as more people (and IoT devices) join various social media platforms. Existing layout techniques to display massive OSN data are computationally expensive; often, their implementations are not easily scalable and usually require an extraordinary amount of time and resources to render. In this work, we will propose and evaluate a distributed computing method to significantly speed up the completion time of social network graph visualization. Existing literature identifies problems with layout of large networks, and alludes to how distributed computing and other techniques might be possible solutions, but so far little empirical research work has been done to implement and test these suppositions. Currently, scholars who are relying on network visualizations in their data exploration and analysis are using work around such as data reduction and filtering techniques to address the scalability issues of current network visualization tools. Our method will build upon existing graph layout techniques, and will put forward a novel graph partitioning scheme that is better-suited for laying out graphs with small-world, scale-free network properties; properties that are naturally occurring in online social networks. Our method will be implemented and evaluated using a popular distributed system for graph processing -- Spark GraphX. The evaluation phase will be based on large-scale anonymized networks collected from social media platforms including Twitter, Flickr, Reddit, and will include both algorithm- and user-based evaluation. The overarching goal of this initiative is to develop and test a new distributed graph partitioning technique for visualizing networks with 100 million+ nodes, share its machine- and user-driven evaluation, and distribute a ready-to-use open source library that can be used by network scholars in various domains (and not just in the area of social media).
在线社交网络(OSN)的图形-表示社交媒体参与者,他们的关系和互动-是一个日益增长的兴趣和重要的调查领域。这些图形的视觉布局是研究人员在各种领域使用的常用工具,以帮助理解网络的底层结构,形成假设,并传达研究结果。图表可以揭示有关网络结构的信息,这些信息可能难以单独通过定量和定性方法确定。由于OSN通常非常大,并且随着越来越多的人(和物联网设备)加入各种社交媒体平台而变得越来越大。现有的显示大量OSN数据的布局技术在计算上是昂贵的;通常,它们的实现不容易扩展,并且通常需要大量的时间和资源来渲染。在这项工作中,我们将提出并评估一种分布式计算方法,以显着加快社交网络图可视化的完成时间。 现有的文献确定了大型网络布局的问题,并暗示如何分布式计算和其他技术可能是可能的解决方案,但到目前为止,很少有实证研究工作已经完成,以实现和测试这些假设。目前,在数据探索和分析中依赖网络可视化的学者正在使用数据缩减和过滤技术等方法来解决当前网络可视化工具的可扩展性问题。 我们的方法将建立在现有的图形布局技术,并将提出一种新的图形分区方案,更适合布局图与小世界,无标度网络属性,自然发生在在线社交网络的属性。我们的方法将使用流行的分布式图形处理系统Spark GraphX来实现和评估。评估阶段将基于从Twitter、Flickr、Reddit等社交媒体平台收集的大规模匿名网络,并将包括基于算法和基于用户的评估。 该计划的总体目标是开发和测试一种新的分布式图分区技术,用于可视化具有1亿多个节点的网络,分享其机器和用户驱动的评估,并分发一个可供网络学者在各个领域(而不仅仅是社交媒体领域)使用的现成开源库。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gruzd, Anatoliy其他文献

Measuring the Burden of Infodemics: Summary of the Methods and Results of the Fifth WHO Infodemic Management Conference.
  • DOI:
    10.2196/44207
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wilhelm, Elisabeth;Ballalai, Isabella;Belanger, Marie-Eve;Benjamin, Peter;Bertrand-Ferrandis, Catherine;Bezbaruah, Supriya;Briand, Sylvie;Brooks, Ian;Bruns, Richard;Bucci, Lucie M.;Calleja, Neville;Chiou, Howard;Devaria, Abhinav;Dini, Lorena;D'Souza, Hyjel;Dunn, Adam G.;Eichstaedt, Johannes C.;Evers, Silvia M. A. A.;Gobat, Nina;Gissler, Mika;Gonzales, Ian Christian;Gruzd, Anatoliy;Hess, Sarah;Ishizumi, Atsuyoshi;John, Oommen;Joshi, Ashish;Kaluza, Benjamin;Khamis, Nagwa;Kosinska, Monika;Kulkarni, Shibani;Lingri, Dimitra;Ludolph, Ramona;Mackey, Tim;Mandic-Rajcevic, Stefan;Menczer, Filippo;Mudaliar, Vijaybabu;Murthy, Shruti;Nazakat, Syed;Nguyen, Tim;Nilsen, Jennifer;Pallari, Elena;Taschner, Natalia Pasternak;Petelos, Elena;Prinstein, Mitchell J.;Roozenbeek, Jon;Schneider, Anton;Srinivasan, Varadharajan;Stevanovic, Aleksandar;Strahwald, Brigitte;Abdul, Shabbir Syed;Machiri, Sandra Varaidzo;Linden, Sander van der;Voegeli, Christopher;Wardle, Claire;Wegwarth, Odette;White, Becky K.;Willie, Estelle;Yau, Brian;Purnat, Tina
  • 通讯作者:
    Purnat, Tina
Examining government cross-platform engagement in social media: Instagram vs Twitter and the big lift project
  • DOI:
    10.1016/j.giq.2018.09.005
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Gruzd, Anatoliy;Lannigan, James;Quigley, Kevin
  • 通讯作者:
    Quigley, Kevin
How coordinated link sharing behavior and partisans' narrative framing fan the spread of COVID-19 misinformation and conspiracy theories.
  • DOI:
    10.1007/s13278-022-00948-y
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Gruzd, Anatoliy;Mai, Philip;Soares, Felipe Bonow
  • 通讯作者:
    Soares, Felipe Bonow
Going viral: How a single tweet spawned a COVID-19 conspiracy theory on Twitter
  • DOI:
    10.1177/2053951720938405
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Gruzd, Anatoliy;Mai, Philip
  • 通讯作者:
    Mai, Philip
Enabling Community Through Social Media
  • DOI:
    10.2196/jmir.2796
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Gruzd, Anatoliy;Haythornthwaite, Caroline
  • 通讯作者:
    Haythornthwaite, Caroline

Gruzd, Anatoliy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gruzd, Anatoliy', 18)}}的其他基金

Studying Human Dynamics at a Massive Scale: The Development and Assessment of a Distributed Approach for Effective Visualization of 100+ Million-Node Social Networks
大规模研究人类动力学:一亿节点社交网络有效可视化分布式方法的开发和评估
  • 批准号:
    RGPIN-2019-05617
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Studying Human Dynamics at a Massive Scale: The Development and Assessment of a Distributed Approach for Effective Visualization of 100+ Million-Node Social Networks
大规模研究人类动力学:一亿节点社交网络有效可视化分布式方法的开发和评估
  • 批准号:
    RGPIN-2019-05617
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Studying Human Dynamics at a Massive Scale: The Development and Assessment of a Distributed Approach for Effective Visualization of 100+ Million-Node Social Networks
大规模研究人类动力学:一亿节点社交网络有效可视化分布式方法的开发和评估
  • 批准号:
    RGPIN-2019-05617
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

靶向Human ZAG蛋白的降糖小分子化合物筛选以及疗效观察
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
HBV S-Human ESPL1融合基因在慢性乙型肝炎发病进程中的分子机制研究
  • 批准号:
    81960115
  • 批准年份:
    2019
  • 资助金额:
    34.0 万元
  • 项目类别:
    地区科学基金项目
基于自适应表面肌电模型的下肢康复机器人“Human-in-Loop”控制研究
  • 批准号:
    61005070
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Human enteric nervous system progenitor dynamics during development and disease
人类肠神经系统祖细胞在发育和疾病过程中的动态
  • 批准号:
    MR/Y013476/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Collaborative Research: The Role of Stress in Human Crowd Dynamics during Emergency Situations
合作研究:紧急情况下压力在人群动态中的作用
  • 批准号:
    2308753
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: Cyberinfrastructure for Human Dynamics and Resilience Research
合作研究:HNDS-I:人类动力学和复原力研究的网络基础设施
  • 批准号:
    2318203
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
MOSAIC: Imaging Human Tissue State Dynamics In Vivo
MOSAIC:体内人体组织状态动态成像
  • 批准号:
    10729423
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
HCC: Small: Investigating the temporal dynamics of resilience during human-computer interaction: an EEG-fNIRS study
HCC:小:研究人机交互过程中弹性的时间动态:一项 EEG-fNIRS 研究
  • 批准号:
    2232869
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: Cyberinfrastructure for Human Dynamics and Resilience Research
合作研究:HNDS-I:人类动力学和复原力研究的网络基础设施
  • 批准号:
    2318206
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: Cyberinfrastructure for Human Dynamics and Resilience Research
合作研究:HNDS-I:人类动力学和复原力研究的网络基础设施
  • 批准号:
    2318205
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Adapting Nonverbal Communication Dynamics to Human-Robot Social Interaction
使非语言沟通动力学适应人机社交互动
  • 批准号:
    2890139
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了