Diagnosis, Learning and Optimization of Smart and Connected Products

智能互联产品的诊断、学习和优化

基本信息

  • 批准号:
    RGPIN-2019-05671
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Today's smart product transmit real-time sensor data to a control centre that can monitor its condition, perform remote diagnosis, and adjust its configuration in real time to improve performance. Such products have revolutionized many industries, transforming traditional manufacturers into service providers. Tesla, for example, monitors its cars for malfunction via in-car sensors. The centre then advises when service is needed. Many issues can be rectified via “over-the-air" software updates. If on-site service is needed, the centre dispatches a service team with the right spare parts. Car configuration can also be adjusted via software so that the car can adapt to user behaviour to improve safety and efficiency. However, the imperfection of sensor data makes the operation of smart products complex. Many failure modes may share similar features and be hard to distinguish. To learn more about a product's true condition, the control centre can wait and monitor the product longer, but this invariably introduces delay. Faced with tension between learning and intervention, the centre must decide when to stop monitoring and what action to take in a timely and accurate fashion. This trade-off between learning and doing lies at the heart of the operations of smart and connected products. Existing models for the control of sensor-embedded systems fall mostly under the framework of partially observable Markov decision processes. It is known that multi-state problems suffer from the curse of dimensionality in dynamic programming and hence the optimal policy is difficult, if not impossible, to compute, and thus most existing work considers simple systems with binary states. A network of connected products requires one to generalize the optimization to multi-state systems, which is now possible due to recent advances in artificial intelligence that compresses the state space. Additionally, existing work often assumes model parameters are known, which is not always the case in reality. The proposed work will use a Bayes-adaptive approach to jointly learn model parameters and hidden system state while making sequential decisions. This research program will: develop the optimal monitoring and diagnostic algorithm for smart products by leveraging the full potential of imperfect sensor data; gain insight into how to optimally fine-tune a product in real time to maximize the performance; and develop a new framework that harnesses connectivity among products to aggregate and share information to improve efficiency of maintenance and operations. Research outcomes are important for manufacturers in the Internet of Things era and for academic researchers in industrial engineering and operations research. These topics also provide a strong opportunity to train HQP in data analytics and real-time optimization.
当今的智能产品将实时传感器数据传输到控制中心,控制中心可以监控其状况、执行远程诊断并实时调整其配置以提高性能。此类产品彻底改变了许多行业,将传统制造商转变为服务提供商。例如,特斯拉通过车内传感器监控其汽车是否出现故障。然后,中心会在需要服务时提出建议。许多问题可以通过“无线”软件更新来纠正。如果需要现场服务,中心会派遣服务团队并提供合适的备件。汽车配置还可以通过软件进行调整,使汽车能够适应用户行为,从而提高安全性和效率。 然而,传感器数据的不完善使得智能产品的操作变得复杂。许多故障模式可能具有相似的特征并且难以区分。为了更多地了解产品的真实状况,控制中心可以等待并监控产品更长时间,但这总是会带来延迟。面对学习与干预之间的紧张关系,中心必须及时准确地决定何时停止监控以及采取何种行动。学习和实践之间的这种权衡是智能互联产品运营的核心。 现有的传感器嵌入式系统控制模型大多属于部分可观察马尔可夫决策过程的框架。众所周知,多状态问题受到动态规划中维数诅咒的影响,因此最优策略即使不是不可能计算也很难计算,因此大多数现有工作都考虑具有二元状态的简单系统。连接产品的网络需要将优化推广到多状态系统,由于压缩状态空间的人工智能的最新进展,现在这一点成为可能。此外,现有的工作通常假设模型参数已知,但现实情况并非总是如此。所提出的工作将使用贝叶斯自适应方法来共同学习模型参数和隐藏系统状态,同时做出顺序决策。 该研究计划将:充分利用不完善传感器数据的潜力,开发智能产品的最佳监控和诊断算法;深入了解如何实时优化产品以最大限度地提高性能;开发一个新的框架,利用产品之间的连接来聚合和共享信息,以提高维护和运营的效率。 研究成果对于物联网时代的制造商以及工业工程和运筹学的学术研究人员来说非常重要。这些主题还为 HQP 提供了数据分析和实时优化培训的绝佳机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wang, Jue其他文献

Viewing and playing fantastical events does not affect children's cognitive flexibility and prefrontal activation.
  • DOI:
    10.1016/j.heliyon.2023.e16892
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Wang, Jue;Moriguchi, Yusuke
  • 通讯作者:
    Moriguchi, Yusuke
Combining WGCNA and machine learning to construct basement membrane-related gene index helps to predict the prognosis and tumor microenvironment of HCC patients and verifies the carcinogenesis of key gene CTSA.
  • DOI:
    10.3389/fimmu.2023.1185916
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Sun, Weijie;Wang, Jue;Wang, Zhiqiang;Xu, Ming;Lin, Quanjun;Sun, Peng;Yuan, Yihang
  • 通讯作者:
    Yuan, Yihang
The pattern of insertion/deletion polymorphism in Arabidopsis thaliana
拟南芥插入/缺失多态性模式
  • DOI:
    10.1007/s00438-008-0370-1
  • 发表时间:
    2008-08
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Araki, Hitoshi;Sun, Xiaoqin;Wang, Jue;Zhang, Wen;Yuan, Huizhong;Tian, Dacheng
  • 通讯作者:
    Tian, Dacheng
Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response.
  • DOI:
    10.1038/s41467-022-34898-y
  • 发表时间:
    2022-11-25
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    He, Xiangjun;Zhang, Zhenjie;Xue, Junyi;Wang, Yaofeng;Zhang, Siqi;Wei, Junkang;Zhang, Chenzi;Wang, Jue;Urip, Brian Anugerah;Ngan, Chun Christopher;Sun, Junjiang;Li, Yuefeng;Lu, Zhiqian;Zhao, Hui;Pei, Duanqing;Li, Chi-Kong;Feng, Bo
  • 通讯作者:
    Feng, Bo
Case report: Germline RECQL mutation potentially involved in hereditary predisposition to acute leukemia.
  • DOI:
    10.3389/fonc.2023.1066083
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Yuan, Wei;Shang, Zhen;Shen, Kefeng;Yu, Qiuxia;Lv, Qiuxia;Cao, Yang;Wang, Jue;Yang, Yi
  • 通讯作者:
    Yang, Yi

Wang, Jue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wang, Jue', 18)}}的其他基金

Diagnosis, Learning and Optimization of Smart and Connected Products
智能互联产品的诊断、学习和优化
  • 批准号:
    RGPIN-2019-05671
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Diagnosis, Learning and Optimization of Smart and Connected Products
智能互联产品的诊断、学习和优化
  • 批准号:
    RGPIN-2019-05671
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Diagnosis, Learning and Optimization of Smart and Connected Products
智能互联产品的诊断、学习和优化
  • 批准号:
    RGPIN-2019-05671
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Diagnosis, Learning and Optimization of Smart and Connected Products
智能互联产品的诊断、学习和优化
  • 批准号:
    DGECR-2019-00473
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
AF: Small: Memory Bounded Optimization and Learning
AF:小:内存限制优化和学习
  • 批准号:
    2341890
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
EAGER: Exploring Automatic Optimization of Multi-tiered HPC Storage Systems via Practical Reinforcement Learning
EAGER:通过实用强化学习探索多层 HPC 存储系统的自动优化
  • 批准号:
    2412345
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
CAREER: Machine Learning for Discrete Optimization
职业:用于离散优化的机器学习
  • 批准号:
    2338226
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
CAREER: Holistic Distributed Resource Management and Discovery via Augmented Learning and Robust Optimization
职业:通过增强学习和鲁棒优化进行整体​​分布式资源管理和发现
  • 批准号:
    2339243
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了