Diagnosis, Learning and Optimization of Smart and Connected Products
智能互联产品的诊断、学习和优化
基本信息
- 批准号:RGPIN-2019-05671
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Today's smart product transmit real-time sensor data to a control centre that can monitor its condition, perform remote diagnosis, and adjust its configuration in real time to improve performance. Such products have revolutionized many industries, transforming traditional manufacturers into service providers. Tesla, for example, monitors its cars for malfunction via in-car sensors. The centre then advises when service is needed. Many issues can be rectified via "over-the-air" software updates. If on-site service is needed, the centre dispatches a service team with the right spare parts. Car configuration can also be adjusted via software so that the car can adapt to user behaviour to improve safety and efficiency. However, the imperfection of sensor data makes the operation of smart products complex. Many failure modes may share similar features and be hard to distinguish. To learn more about a product's true condition, the control centre can wait and monitor the product longer, but this invariably introduces delay. Faced with tension between learning and intervention, the centre must decide when to stop monitoring and what action to take in a timely and accurate fashion. This trade-off between learning and doing lies at the heart of the operations of smart and connected products. Existing models for the control of sensor-embedded systems fall mostly under the framework of partially observable Markov decision processes. It is known that multi-state problems suffer from the curse of dimensionality in dynamic programming and hence the optimal policy is difficult, if not impossible, to compute, and thus most existing work considers simple systems with binary states. A network of connected products requires one to generalize the optimization to multi-state systems, which is now possible due to recent advances in artificial intelligence that compresses the state space. Additionally, existing work often assumes model parameters are known, which is not always the case in reality. The proposed work will use a Bayes-adaptive approach to jointly learn model parameters and hidden system state while making sequential decisions. This research program will: develop the optimal monitoring and diagnostic algorithm for smart products by leveraging the full potential of imperfect sensor data; gain insight into how to optimally fine-tune a product in real time to maximize the performance; and develop a new framework that harnesses connectivity among products to aggregate and share information to improve efficiency of maintenance and operations. Research outcomes are important for manufacturers in the Internet of Things era and for academic researchers in industrial engineering and operations research. These topics also provide a strong opportunity to train HQP in data analytics and real-time optimization.
如今的智能产品将实时传感器数据传输到控制中心,控制中心可以监控其状况,执行远程故障诊断,并实时调整其配置以提高性能。这类产品给许多行业带来了革命性的变化,将传统制造商转变为服务提供商。例如,特斯拉通过车内传感器监控其汽车的故障。然后,该中心会就何时需要服务提出建议。很多问题都可以通过“空中”软件更新来解决。如果需要现场服务,中心会派出一支配备合适备件的服务团队。还可以通过软件调整汽车配置,使汽车能够适应用户行为,提高安全性和效率。然而,传感器数据的不完善使得智能产品的操作变得复杂,许多故障模式可能具有相似的特征,难以区分。为了更多地了解产品的真实情况,控制中心可以等待和监控产品更长时间,但这不可避免地会导致延迟。面对学习和干预之间的紧张关系,该中心必须决定何时停止监测以及及时和准确地采取什么行动。这种学习和实践之间的权衡是智能互联产品运营的核心。现有的传感器嵌入系统控制模型大多落在部分可观测马尔可夫决策过程的框架下。众所周知,多状态问题受到动态规划中的维度诅咒的影响,因此最优策略很难计算,如果不是不可能的话,因此大多数现有的工作考虑的是具有二进制状态的简单系统。互联产品网络需要将优化推广到多状态系统,这现在是可能的,因为人工智能最近在压缩状态空间方面取得了进展。此外,现有的工作通常假设模型参数是已知的,但在现实中并不总是这样。拟议的工作将使用贝叶斯自适应方法来联合学习模型参数和隐藏系统状态,同时进行顺序决策。这项研究计划将:通过充分利用不完美的传感器数据的全部潜力,为智能产品开发最优的智能监控和诊断算法;深入了解如何以最佳的方式实时微调产品以最大化性能;并开发一个新的框架,利用产品之间的连接来聚合和共享信息,以提高维护和运营的效率。研究成果对于物联网时代的制造商以及工业工程和运筹学领域的学术研究人员来说都很重要。这些主题还为HQP提供了在数据分析和实时优化方面进行培训的良好机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wang, Jue其他文献
Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response.
- DOI:
10.1038/s41467-022-34898-y - 发表时间:
2022-11-25 - 期刊:
- 影响因子:16.6
- 作者:
He, Xiangjun;Zhang, Zhenjie;Xue, Junyi;Wang, Yaofeng;Zhang, Siqi;Wei, Junkang;Zhang, Chenzi;Wang, Jue;Urip, Brian Anugerah;Ngan, Chun Christopher;Sun, Junjiang;Li, Yuefeng;Lu, Zhiqian;Zhao, Hui;Pei, Duanqing;Li, Chi-Kong;Feng, Bo - 通讯作者:
Feng, Bo
Synchronization in laser-triggered surface flashover experiment
激光触发表面闪络实验的同步
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Zhang, Dong-Dong;Wang, Jiong;Sun, Guang-Sheng;Wang, Jue;Yan, Ping;Zhang, Shi-Chang;Pan, Ru-Zheng - 通讯作者:
Pan, Ru-Zheng
Case report: Germline RECQL mutation potentially involved in hereditary predisposition to acute leukemia.
- DOI:
10.3389/fonc.2023.1066083 - 发表时间:
2023 - 期刊:
- 影响因子:4.7
- 作者:
Yuan, Wei;Shang, Zhen;Shen, Kefeng;Yu, Qiuxia;Lv, Qiuxia;Cao, Yang;Wang, Jue;Yang, Yi - 通讯作者:
Yang, Yi
膝下动脉逆行足底弓成形术:与顺行血管成形术结果比较
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:4.8
- 作者:
Zhao, Jun-Gong;Wang, Jue;Lu, Hai-Tao;Zhang, Pei-Lei - 通讯作者:
Zhang, Pei-Lei
Embedded image compression method using ridgelet
使用脊波的嵌入式图像压缩方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Zeng, Li;Zou, Xiaobing;Li, Zongjian;Wang, Jue - 通讯作者:
Wang, Jue
Wang, Jue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wang, Jue', 18)}}的其他基金
Diagnosis, Learning and Optimization of Smart and Connected Products
智能互联产品的诊断、学习和优化
- 批准号:
RGPIN-2019-05671 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Diagnosis, Learning and Optimization of Smart and Connected Products
智能互联产品的诊断、学习和优化
- 批准号:
RGPIN-2019-05671 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Diagnosis, Learning and Optimization of Smart and Connected Products
智能互联产品的诊断、学习和优化
- 批准号:
RGPIN-2019-05671 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Diagnosis, Learning and Optimization of Smart and Connected Products
智能互联产品的诊断、学习和优化
- 批准号:
DGECR-2019-00473 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
AF: Small: Memory Bounded Optimization and Learning
AF:小:内存限制优化和学习
- 批准号:
2341890 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
EAGER: Exploring Automatic Optimization of Multi-tiered HPC Storage Systems via Practical Reinforcement Learning
EAGER:通过实用强化学习探索多层 HPC 存储系统的自动优化
- 批准号:
2412345 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
CAREER: Holistic Distributed Resource Management and Discovery via Augmented Learning and Robust Optimization
职业:通过增强学习和鲁棒优化进行整体分布式资源管理和发现
- 批准号:
2339243 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
CAREER: Machine Learning for Discrete Optimization
职业:用于离散优化的机器学习
- 批准号:
2338226 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant