Data Driven Human Motion Synthesis and 3D Reconstruction
数据驱动的人体运动合成和 3D 重建
基本信息
- 批准号:RGPIN-2019-05729
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research program is primarily in three dimensional (3D) graphics. The overarching objective is to efficiently synthesize digital objects and worlds (virtual or augmented reality - VR/AR) and interact with them easily. The current focus is on using sensed data and graphics processing (GPU) for the development of data-driven methods, with application in games, entertainment, engineering and virtual simulation. While earlier work was mainly on algorithmic methods using hand-crafted features, the main idea in the proposal here is to develop new methods which apply machine/deep learning and machine inference to solve 3D graphics problems in 3D reconstruction and human motion. The proposed research has two core research objectives and one technical objective. The first is creating natural looking human action sequences from motion data (for use in games, films and VR/AR). The second is methods for automatic reconstruction of 3D objects and larger scenes from sensed visual data (for use in engineering design, simulation and VR/AR). The technical objective is to build software tools which can empower artists to include sensor driven visual effects in live stage performances, and in interactive documentaries.
While there is a lot of research on using deep learning for 3D graphics problems, the proposed work is different and innovative in the way the problems and solutions are formulated. Deep learning solutions depend heavily on data and on extensive experiments to decide on the network architecture and hyper-parameters. Since large annotated data sets are difficult to obtain, my research methodology emphasizes (1) reducing dependence on very large labelled data, yet creating adequate data if needed, (2) initiating research students early into experimentation with appropriate access to infrastructure, (3) formulating problems keeping in mind theoretical foundations as well as eventual interest to industry and artists, and (4) keeping track of state of the art while developing innovative solutions. Specifically, I will investigate combining deep learning and machine inference with hand-crafted features, thereby reducing the need for large data and large neural networks. I will build upon ongoing research with students in my 3D graphics group which has the required infrastructure and industry collaborations. On average 3 PhD and 2 MSc students will be trained per year in leading edge research and technologies of visual data computing. With basic research pursuits being the primary objective, they will work in small teams, as needed, and acquire the skills to implement, test and validate complex systems, and communicate their research results. PhD students, in particular will be trained to develop their own long-term research program in 3D graphics. Basic research will add new knowledge to 3D graphics through publications in relevant venues. New tools will benefit industry, artists, and entertainment and virtual simulation sectors in Canada.
我的研究项目主要是三维(3D)图形。总体目标是有效地合成数字对象和世界(虚拟或增强现实- VR/AR),并轻松与它们进行交互。目前的重点是使用感测数据和图形处理(GPU)来开发数据驱动方法,并应用于游戏,娱乐,工程和虚拟仿真。虽然早期的工作主要是使用手工特征的算法方法,但这里的主要思想是开发新方法,应用机器/深度学习和机器推理来解决3D重建和人体运动中的3D图形问题。该研究有两个核心研究目标和一个技术目标。第一个是从运动数据中创建自然的人类动作序列(用于游戏,电影和VR/AR)。 第二种是从感知的视觉数据自动重建3D对象和更大场景的方法(用于工程设计,仿真和VR/AR)。技术目标是建立软件工具,使艺术家能够在现场舞台表演和互动纪录片中包括传感器驱动的视觉效果。
虽然有很多关于将深度学习用于3D图形问题的研究,但所提出的工作在问题和解决方案的制定方式上是不同的和创新的。深度学习解决方案在很大程度上依赖于数据和大量的实验来决定网络架构和超参数。由于大型注释数据集很难获得,我的研究方法强调(1)减少对非常大的标记数据的依赖,但如果需要,则创建足够的数据,(2)在适当访问基础设施的情况下,尽早启动研究学生进行实验,(3)在考虑理论基础以及行业和艺术家的最终兴趣的情况下制定问题,以及(4)在开发创新解决方案的同时跟踪最新技术水平。具体来说,我将研究将深度学习和机器推理与手工制作的功能相结合,从而减少对大数据和大型神经网络的需求。我将建立在正在进行的研究与学生在我的3D图形组具有所需的基础设施和行业合作。平均每年将有3名博士和2名硕士学生接受视觉数据计算前沿研究和技术的培训。随着基础研究的追求是主要目标,他们将在小团队工作,根据需要,并获得实施,测试和验证复杂系统的技能,并传达他们的研究成果。 特别是博士生将接受培训,以开发自己的3D图形长期研究计划。基础研究将通过相关场所的出版物为3D图形增添新知识。新工具将使加拿大的工业、艺术家、娱乐和虚拟仿真部门受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mudur, Sudhir其他文献
Optimized keyframe extraction for 3D character?animations
- DOI:
10.1002/cav.1471 - 发表时间:
2012-11-01 - 期刊:
- 影响因子:1.1
- 作者:
Jin, Chao;Fevens, Thomas;Mudur, Sudhir - 通讯作者:
Mudur, Sudhir
Mudur, Sudhir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mudur, Sudhir', 18)}}的其他基金
Data Driven Human Motion Synthesis and 3D Reconstruction
数据驱动的人体运动合成和 3D 重建
- 批准号:
RGPIN-2019-05729 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Data Driven Human Motion Synthesis and 3D Reconstruction
数据驱动的人体运动合成和 3D 重建
- 批准号:
RGPIN-2019-05729 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Data Driven Human Motion Synthesis and 3D Reconstruction
数据驱动的人体运动合成和 3D 重建
- 批准号:
RGPIN-2019-05729 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Data Driven Techniques for 3D Reconstruction, Motion Generation and Authoring Interactive Spaces in Media Arts
媒体艺术中 3D 重建、运动生成和创作互动空间的数据驱动技术
- 批准号:
RGPIN-2018-05020 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Gesture-based user interface augmentation for stereo animation drawing
用于立体动画绘制的基于手势的用户界面增强
- 批准号:
417602-2011 - 财政年份:2011
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Computational techniques for processing and visualising very large datasets in 3D
用于处理和可视化 3D 大型数据集的计算技术
- 批准号:
261435-2007 - 财政年份:2010
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Computational techniques for processing and visualising very large datasets in 3D
用于处理和可视化 3D 大型数据集的计算技术
- 批准号:
261435-2007 - 财政年份:2009
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Computational techniques for processing and visualising very large datasets in 3D
用于处理和可视化 3D 大型数据集的计算技术
- 批准号:
261435-2007 - 财政年份:2008
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Computational techniques for processing and visualising very large datasets in 3D
用于处理和可视化 3D 大型数据集的计算技术
- 批准号:
261435-2007 - 财政年份:2007
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Computational techniques for very large 3D geometric models
超大型 3D 几何模型的计算技术
- 批准号:
261435-2003 - 财政年份:2006
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Development of data driven and AI empowered systems biology to study human diseases
数据驱动和人工智能的发展使系统生物学能够研究人类疾病
- 批准号:
10714763 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Data Driven Predictive Auditory Cues for Safety and Fluency in Human-Robot Interaction
数据驱动的预测听觉线索可确保人机交互的安全性和流畅性
- 批准号:
2240525 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Comprehensive data-driven learning, prediction and generation of whole-body contact motions based on cyber-physical human model
基于网络物理人体模型的全面数据驱动的全身接触运动学习、预测和生成
- 批准号:
22H05002 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
CPS: Small: Data-Driven Modeling and Control of Human-Cyber-Physical Systems with Extended-Reality-Assisted Interfaces
CPS:小型:具有扩展现实辅助接口的人类网络物理系统的数据驱动建模和控制
- 批准号:
2223035 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
A data driven computational model of the human foot.
数据驱动的人脚计算模型。
- 批准号:
574256-2022 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
University Undergraduate Student Research Awards
Data-Driven Computational Methods Utilizing Artificial Intelligence to Optimize Phenotype in Human Induced Pluripotent Stem Cell Bioprocessing
利用人工智能优化人类诱导多能干细胞生物加工表型的数据驱动计算方法
- 批准号:
546785-2020 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Postgraduate Scholarships - Doctoral
SCC-CIVIC-PG Track A: Human-centric, Data-driven Coastal Flood Resilience Strategies for Economically Disadvantaged Communities on Long Island
SCC-CIVIC-PG 轨道 A:针对长岛经济弱势社区的以人为本、数据驱动的沿海防洪策略
- 批准号:
2228490 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Human-informed data-driven development of next-generation T cell vaccine against malaria
以人为本的数据驱动开发下一代抗疟疾 T 细胞疫苗
- 批准号:
10443906 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Human-informed data-driven development of next-generation T cell vaccine against malaria
以人为本的数据驱动开发下一代抗疟疾 T 细胞疫苗
- 批准号:
10756179 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Data Driven Human Motion Synthesis and 3D Reconstruction
数据驱动的人体运动合成和 3D 重建
- 批准号:
RGPIN-2019-05729 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual