Representations of Kac-Moody Groups and Applications to Automorphic Forms
Kac-Moody 群的表示及其在自守形式中的应用
基本信息
- 批准号:RGPIN-2019-06112
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal lies at the intersection of representation theory and number theory and concerns a class of infinite-dimensional groups known as Kac-Moody groups. We focus both on developing tools necessary for concrete applications to well-known questions in number theory, and also on introducing new constructions in infinite-dimensional representation theory.
Applications to Number Theory
The theory of Eisenstein series on loop groups (the simplest of the infinite dimensional Kac-Moody groups) comes in two related flavours-- number fields and the function fields. In the function field setting, a precise proposal was put forward in joint work with H. Garland and S.D. Miller (building on work of A. Braverman and D. Kazhdan) relating automorphic L-functions from finite dimensions to infinite-dimensions. To carry this project to fruition, one needs to analytically continue a new object which appearsthe so called negative cuspidal Eisenstein series. Our understanding in the number field setting lags behind the function field setting because of the absence of a theory of spherical functions for real loop groups. Inspired by techniques from probability theory and quantum groups, we propose to study a Gaussian measure on these groups and extract from them concrete formulas for spherical functions and their limits.
In recent work with A. Puskas, we have introduced a metaplectic cover of any simply-connected Kac-Moody group and studied local Whittaker functions on it. It has long been expected that global Fourier coefficients of Eisenstein series on such a cover should be linked to very concrete questions about moments of Dirichlet L-functions. Having made the first links in this direction, we propose to continue these studies.
Generalizing the work of my PhD thesis (which was in the function field setting), we propose a geometric interpretation of arithmetic quotients of loop groups over number fields. We expect this to be connected to a recent Arakelov theory for formal surfaces (due to J.B.-Bost) and we plan to apply our interpretation to estimate for the number of rational points of certain moduli spaces of bundles on an arithmetic surface.
New Techniques in Representation Theory of Kac-Moody Groups
Based on our previous joint work with A. Braverman and D. Kazhdan on Hecke algebras, we now propose to investigate the notion of cuspidal representations, the building blocks of all representations, and study their L-functions. Together with D. Muthiah, we also propose to study a notion of double affine Kazhdan-Lusztig functions.
Physicists interested in low-energy limits of certain string theories were led to studying “minimal” automorphic representations on certain exceptional Lie groups. They also postulated the existence, based on remarkable calculations, of such representations for the infinite-dimensional groups. We propose to develop aspects of a Kirillov-Duflo orbital theory in infinite-dimensions to mathematically construct these.
This proposal lies at the intersection of representation theory and number theory and concerns a class of infinite-dimensional groups known as Kac-Moody groups. We focus both on developing tools necessary for concrete applications to well-known questions in number theory, and also on introducing new constructions in infinite-dimensional representation theory.
Applications to Number Theory
The theory of Eisenstein series on loop groups (the simplest of the infinite dimensional Kac-Moody groups) comes in two related flavours-- number fields and the function fields. In the function field setting, a precise proposal was put forward in joint work with H. Garland and S.D. Miller (building on work of A. Braverman and D. Kazhdan) relating automorphic L-functions from finite dimensions to infinite-dimensions. To carry this project to fruition, one needs to analytically continue a new object which appearsthe so called negative cuspidal Eisenstein series. Our understanding in the number field setting lags behind the function field setting because of the absence of a theory of spherical functions for real loop groups. Inspired by techniques from probability theory and quantum groups, we propose to study a Gaussian measure on these groups and extract from them concrete formulas for spherical functions and their limits.
In recent work with A. Puskas, we have introduced a metaplectic cover of any simply-connected Kac-Moody group and studied local Whittaker functions on it. It has long been expected that global Fourier coefficients of Eisenstein series on such a cover should be linked to very concrete questions about moments of Dirichlet L-functions. Having made the first links in this direction, we propose to continue these studies.
Generalizing the work of my PhD thesis (which was in the function field setting), we propose a geometric interpretation of arithmetic quotients of loop groups over number fields. We expect this to be connected to a recent Arakelov theory for formal surfaces (due to J.B.-Bost) and we plan to apply our interpretation to estimate for the number of rational points of certain moduli spaces of bundles on an arithmetic surface.
New Techniques in Representation Theory of Kac-Moody Groups
Based on our previous joint work with A. Braverman and D. Kazhdan on Hecke algebras, we now propose to investigate the notion of cuspidal representations, the building blocks of all representations, and study their L-functions. Together with D. Muthiah, we also propose to study a notion of double affine Kazhdan-Lusztig functions.
Physicists interested in low-energy limits of certain string theories were led to studying “minimal” automorphic representations on certain exceptional Lie groups. They also postulated the existence, based on remarkable calculations, of such representations for the infinite-dimensional groups. We propose to develop aspects of a Kirillov-Duflo orbital theory in infinite-dimensions to mathematically construct these.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patnaik, Manish其他文献
Patnaik, Manish的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patnaik, Manish', 18)}}的其他基金
Representations of Kac-Moody Groups and Applications to Automorphic Forms
Kac-Moody 群的表示及其在自守形式中的应用
- 批准号:
RGPIN-2019-06112 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Representations of Kac-Moody Groups and Applications to Automorphic Forms
Kac-Moody 群的表示及其在自守形式中的应用
- 批准号:
RGPIN-2019-06112 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Representations of Kac-Moody Groups and Applications to Automorphic Forms
Kac-Moody 群的表示及其在自守形式中的应用
- 批准号:
RGPIN-2019-06112 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms on Loop Groups
循环群上的自守形式
- 批准号:
RGPIN-2014-04622 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms on Loop Groups
循环群上的自守形式
- 批准号:
RGPIN-2014-04622 - 财政年份:2017
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms on Loop Groups
循环群上的自守形式
- 批准号:
RGPIN-2014-04622 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms on Loop Groups
循环群上的自守形式
- 批准号:
RGPIN-2014-04622 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms on Loop Groups
循环群上的自守形式
- 批准号:
RGPIN-2014-04622 - 财政年份:2014
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
KAC蛋白激酶与ATG8互作调控叶绿体自噬的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
广义相交矩阵李代数及其相关的Kac-Moody代数研究
- 批准号:11626189
- 批准年份:2016
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
全非线性Feynman-Kac公式及其应用的若干研究
- 批准号:11601282
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
限制特殊奇Hamilton超代数的Kac模
- 批准号:11526084
- 批准年份:2015
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
Kac-Moody 代数及相关李代数的表示理论
- 批准号:11471294
- 批准年份:2014
- 资助金额:76.0 万元
- 项目类别:面上项目
广义Kac-Moody代数的包络代数的半典范基
- 批准号:11226063
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
广义Kac--Moody代数表示与群表示的研究
- 批准号:10071061
- 批准年份:2000
- 资助金额:10.5 万元
- 项目类别:面上项目
Kac-Moody代数的表示与量子群
- 批准号:19871057
- 批准年份:1998
- 资助金额:12.0 万元
- 项目类别:面上项目
齐性空间和KAC-MOODY 代数
- 批准号:19231021
- 批准年份:1992
- 资助金额:3.0 万元
- 项目类别:重点项目
典型群与Kac-Moody群的子群结构
- 批准号:19271069
- 批准年份:1992
- 资助金额:1.5 万元
- 项目类别:面上项目
相似海外基金
Kac-Moody quantum symmetric pairs, KLR algebras and generalized Schur-Weyl duality
Kac-Moody 量子对称对、KLR 代数和广义 Schur-Weyl 对偶性
- 批准号:
EP/W022834/1 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Fellowship
Representations of Kac-Moody Groups and Applications to Automorphic Forms
Kac-Moody 群的表示及其在自守形式中的应用
- 批准号:
RGPIN-2019-06112 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Representations of Kac-Moody Groups and Applications to Automorphic Forms
Kac-Moody 群的表示及其在自守形式中的应用
- 批准号:
RGPIN-2019-06112 - 财政年份:2021
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Infinite dimensional geometry of Kac-Moody groups and integrable systems
Kac-Moody 群和可积系统的无限维几何
- 批准号:
20K22309 - 财政年份:2020
- 资助金额:
$ 1.38万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Representations of Kac-Moody Groups and Applications to Automorphic Forms
Kac-Moody 群的表示及其在自守形式中的应用
- 批准号:
RGPIN-2019-06112 - 财政年份:2019
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Grants Program - Individual
Extensions of integrable quantum field theories based on Lorentzian Kac-Moody algebras
基于洛伦兹 Kac-Moody 代数的可积量子场论的扩展
- 批准号:
2118895 - 财政年份:2018
- 资助金额:
$ 1.38万 - 项目类别:
Studentship
Fundamental Questions in Theory of Algebraic and Kac-Moody Groups
代数和 Kac-Moody 群理论的基本问题
- 批准号:
1789943 - 财政年份:2016
- 资助金额:
$ 1.38万 - 项目类别:
Studentship
Automorphic Forms on Higher Rank and Kac-Moody Groups
高阶群和 Kac-Moody 群上的自守形式
- 批准号:
1500562 - 财政年份:2015
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
Around Langlands duality for representations of affine Kac-Moody groups
仿射 Kac-Moody 群表示的朗兰兹对偶性
- 批准号:
1200807 - 财政年份:2012
- 资助金额:
$ 1.38万 - 项目类别:
Continuing Grant