Extensions of integrable quantum field theories based on Lorentzian Kac-Moody algebras
基于洛伦兹 Kac-Moody 代数的可积量子场论的扩展
基本信息
- 批准号:2118895
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal aims to investigate the role played by Lorentzian Kac-Moody algebras in integrable quantum field theories. Finite dimensional Lie algebras are central in the de-scription of the fundamental laws and forces of nature since the 1930s. This tool set to describe gauge theories was enlarged when infinite dimensional Kac-Moody algebras were discovered in the 1960. Affine algebras, which are subclasses of the former, play now a vi-tal role in the understanding and description of string theory and conformal field theory1 . Hyperbolic Kac-Moody algebras and Lorentzian Kac-Moody algebras have only been de-veloped fairly recently2 and it is established that they characterize the symmetries a more modern versions of string theory, that is M-theory3 . In particular, the E10 and En exten-sions of the exceptional Lie algebras play a central role45 . The understanding of the underlying mathematics regarding Lorentzian Kac-Moody algebras is fairly novel and in parts still incomplete. While simple Lie algebras of finite dimensional or affine type are well studied and fully classified, Lorentzian Kac-Moody algebras are still under investigation. The classification scheme is based on the study offinite connected Dynkin diagrams or equivalently their root systems or Cartan matrices. A particular type of Kac-Moody algebras that has been studied in some detail are usually referred as 'hyperbolic'. Their Dynkin diagrams are connected in such a way such that deletion of any one node leaves a (possibly disconnected) set of connected Dynkin diagrams each of which is of finite type except for at most one of affine type. The hyperbolic Kac-Moody algebras have been classified, possess no more than ten nodes and a Cartan matrix that is Lorentzian, that is, nonsingular and endowed with exactly one negative eigenvalue. In parallel and as part of the understanding of the above, integrable quantum field theories in one space and one time dimensions have been developed using precisely these mathematical tools of finite and infinite dimensional Lie algebras. They were employed in the form factor bootstrap approach6 that enables one to construct scattering matrices7 t9 all orders in perturbation theory in the coupling constants. A subsequent expansion in terms of n-particle form factors allows to compute quantum correlation functions in non-perturbative fashion in the coupling. The expansion in terms of n-particle form factors is known to converge very rapidly. So far no theories of this type have been developed based on Lorentzian Kac-Moody al-gebras. The aim of this proposal is to fill this gap and study their properties. A completion or even a partial completion of this will not only enlarge the set of integrable quantum field theories and enrich their understanding, but it is also expected to shed new light on the ongoing investigations in M-theory. The latter will also hold even if the extended models turn out to break the integrability. MethodologyThe methods to be used in this project will be in part those from standard quantum mechanics, but especially the tool developed in the context of integrable quantum field theories, that is the S-matrix bootstrap method and the form factor approach. The math-ematical tools will be finite dimensional Lie algebras, infinite dimensional Lie algebras (in particular Kac-Moody algebra) and mainly Lorentzian Kac-Moody algebras. I will com-mence with the study of classical models based on these latter algebras and employ also techniques developed in the context of classical integrable systems. Given my background, I am already familiar with the general principals of quantum field theory, but I will have to familiarize myself with some of the more advanced techniques of their quantum integrable versions and especially with the mathematics around Lorentzian Kac-Moody algebras.
这个提议的目的是研究洛伦兹Kac-Moody代数在可积量子场论中所扮演的角色。自20世纪30年代以来,有限维李代数一直是描述自然界基本定律和力的核心。当无限维的卡茨-穆迪代数在1960年被发现时,这个用来描述规范理论的工具集被扩大了。仿射代数,这是前者的子类,现在发挥着至关重要的作用,在理解和描述弦理论和共形场论1。双曲Kac-Moody代数和洛伦兹Kac-Moody代数最近才发展起来2,并且已经确定它们表征了更现代版本的弦理论(即M理论)的对称性3。特别是,例外李代数的E10和En扩张起着中心作用。关于洛伦兹Kac-Moody代数的基本数学的理解是相当新颖的,并且部分仍然不完整。虽然有限维或仿射型的单李代数已经被很好地研究和完全分类,但洛伦兹Kac-Moody代数仍在研究中。该分类方案基于对有限连通丹金图或等效地其根系或嘉当矩阵的研究。一种特殊类型的卡茨-穆迪代数,已被研究的一些细节,通常被称为“双曲”。它们的Dynkin图以这样一种方式连接,使得删除任何一个节点都会留下一组(可能是断开的)连接的Dynkin图,每个Dynkin图都是有限类型的,除了最多一个仿射类型。双曲Kac-Moody代数已被分类,具有不超过10个节点和一个Cartan矩阵是洛伦兹的,也就是说,非奇异的,并赋予正好一个负特征值。与此同时,作为理解上述内容的一部分,在一个空间和一个时间维度中的可积量子场论已经精确地使用有限维和无限维李代数的这些数学工具来发展。它们被用于形状因子自举方法6,该方法使人们能够在耦合常数的微扰理论中构建散射矩阵7 t9。随后在n粒子的形状因子方面的扩展允许在耦合中以非微扰的方式计算量子相关函数。已知在n粒子形状因子方面的扩展非常快速地收敛。到目前为止,还没有基于洛伦兹Kac-Moody代数的这类理论。本提案的目的是填补这一空白,并研究其性质。完成或部分完成这一点不仅会扩大可积量子场论的范围,丰富对它们的理解,而且还有望为正在进行的M理论研究带来新的启示。即使扩展的模型破坏了可积性,后者也将成立。在这个项目中使用的方法将部分来自标准量子力学,但特别是在可积量子场论的背景下开发的工具,即S-矩阵自举方法和形状因子方法。数学工具将是有限维李代数、无限维李代数(特别是Kac-Moody代数)和主要是Lorentzian Kac-Moody代数。我将与这些后者代数的基础上的经典模型的研究com-mence,并采用在经典可积系统的背景下发展的技术。鉴于我的背景,我已经熟悉量子场论的一般原理,但我必须熟悉它们的量子可积版本的一些更高级的技术,特别是与洛伦兹卡茨-穆迪代数有关的数学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
- 批准号:
23H00083 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Quantum groups, integrable systems and dualities
量子群、可积系统和对偶性
- 批准号:
2302661 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Classical and Quantum integrable hierarchies in Gromov-Witten type theories
Gromov-Witten 类型理论中的经典和量子可积层次结构
- 批准号:
23KF0114 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Integrable deformations with twisted quantum affine symmetry
具有扭曲量子仿射对称性的可积分变形
- 批准号:
2713401 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
- 批准号:
DDG-2022-00024 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Development Grant
Quantum algebra: from representation theory to integrable systems
量子代数:从表示论到可积系统
- 批准号:
2744813 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Research in Integrable Quantum Field Theory
可积量子场论研究
- 批准号:
2210187 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Singular limits in nearly integrable quantum systems and complex dynamical systems
近可积量子系统和复杂动力系统中的奇异极限
- 批准号:
22H01146 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)