Bridging Statistical Hypothesis Tests and Deep Learning for Reliability and Computational Efficiency
连接统计假设检验和深度学习以提高可靠性和计算效率
基本信息
- 批准号:2134037
- 负责人:
- 金额:$ 110万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to bridge two fundamental areas — statistical hypothesis testing and deep learning — through developing reliable machine learning and computationally efficient modern hypothesis tests. The benefit of such a bridge goes both ways: on the one hand, it will enable the leveraging of deep learning to develop efficient and powerful testing tools for high-dimensional and complex data; on the other hand, it supports the use of testing methodologies to develop principled validation tools for machine learning models and provide a theoretical foundation of deep models themselves. The work will address critical challenges in making deep learning-based algorithms applicable and trustworthy for making discoveries from data, akin to the role that hypothesis testing has played in the past decades. The investigators will provide research opportunities for graduate and undergraduate students and develop pedagogical materials for graduate-level and undergraduate-level courses on machine learning and data science. The theoretical and computational outcomes of the project are expected to benefit research and development in industry, government, and national labs. The research project targets fundamental challenges in the cutting-edge research areas of statistical hypothesis tests. The topics include robust hypothesis tests, non-parametric tests (high-dimensional setting), goodness-of-fit tests, sequential tests (including sequential change-point detection), and tests for non-identically-independently-districtbuted (i.i.d.) data. The research plan consists of four highly integrated thrusts: (1) Develop deep learning-based robust hypothesis tests, provide performance guarantees, and develop efficient computational methods to leverage modern optimization. (2) Develop deep-learning-based non-parametric two-sample tests that exploit low-dimensional structure in data. (3) Develop model diagnosis tools for deep learning models such as goodness-of-fit tests. (4) Develop learning-based hypothesis tests for sequential and observational data (non-i.i.d.). The answers to the questions under study will also benefit several closely related areas, including robust machine learning and domain adaptation. The research is expected to result in powerful tools for a wide range of applications and advance knowledge in other scientific and engineering domains such as single-cell RNA sequencing data analysis, monitoring critical national infrastructures such as power grids and networks, smart logistic networks, and disease outbreak detection. The research components will be tightly integrated with educational activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过开发可靠的机器学习和计算有效的现代假设测试来弥合两个基本领域 - 统计假设检验和深度学习。这种桥梁的好处是双向的:一方面,它将能够利用深度学习来开发高维和复杂数据的高效和强大的测试工具;另一方面,它支持使用测试方法为机器学习模型开发主要验证工具,并为深层模型本身提供理论基础。这项工作将解决在从数据中发现的基于深度学习的算法和可信赖的算法方面的关键挑战,类似于假设测试在过去几十年中所扮演的角色。调查人员将为研究生和本科生提供研究机会,并开发有关机器学习和数据科学的研究生级和本科课程的教学材料。该项目的理论和计算结果有望使工业,政府和国家实验室的研发有益。该研究项目针对统计假设检验的尖端研究领域的基本挑战。主题包括可靠的假设检验,非参数测试(高维设置),拟合优点,顺序测试(包括顺序更改点检测)以及非本质上独立分区的测试(I.I.D.)数据。研究计划由四个高度集成的推力组成:(1)开发基于深度学习的强大假设检验,提供绩效保证,并开发有效的计算方法来利用现代优化。 (2)开发基于深度学习的非参数两样本测试,以利用数据中的低维结构。 (3)为深度学习模型(例如合适性测试)开发模型诊断工具。 (4)为顺序和观察数据开发基于学习的假设检验(non-i.i.d。)。研究中的问题的答案还将使几个紧密相关的领域受益,包括强大的机器学习和域适应性。预计这项研究将为广泛的应用提供强大的工具,并在其他科学和工程领域(例如单细胞RNA测序数据分析),监测关键的国家基础设施,例如电网和网络,智能逻辑网络以及疾病爆发发现。该研究组件将与教育活动紧密整合。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响标准来评估,被认为是宝贵的支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Data-Driven Approach to Robust Hypothesis Testing Using Sinkhorn Uncertainty Sets
- DOI:10.1109/isit50566.2022.9834367
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Jie Wang;Yao Xie
- 通讯作者:Jie Wang;Yao Xie
Effective Minkowski Dimension of Deep Nonparametric Regression: Function Approximation and Statistical Theories
- DOI:10.48550/arxiv.2306.14859
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Zixuan Zhang;Minshuo Chen;Mengdi Wang;Wenjing Liao;Tuo Zhao
- 通讯作者:Zixuan Zhang;Minshuo Chen;Mengdi Wang;Wenjing Liao;Tuo Zhao
Non-stationary spatio-temporal point process modeling for high-resolution COVID-19 data
- DOI:10.1093/jrsssc/qlad013
- 发表时间:2023-03-28
- 期刊:
- 影响因子:1.6
- 作者:Dong,Zheng;Zhu,Shixiang;Rodriguez-Cortes,Francisco J.
- 通讯作者:Rodriguez-Cortes,Francisco J.
Spatio-temporal point processes with deep non-stationary kernels
- DOI:10.48550/arxiv.2211.11179
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Zheng Dong;Xiuyuan Cheng;Yao Xie
- 通讯作者:Zheng Dong;Xiuyuan Cheng;Yao Xie
Neural Spectral Marked Point Processes
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Shixiang Zhu;Haoyun Wang;Xiuyuan Cheng;Yao Xie
- 通讯作者:Shixiang Zhu;Haoyun Wang;Xiuyuan Cheng;Yao Xie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yao Xie其他文献
Co-transport of negatively charged nanoparticles in saturated porous media: Impacts of hydrophobicity and surface O-functional groups.
带负电纳米颗粒在饱和多孔介质中的共传输:疏水性和表面 O 官能团的影响。
- DOI:
10.1016/j.jhazmat.2020.124477 - 发表时间:
2020-11 - 期刊:
- 影响因子:13.6
- 作者:
Tianjiao Xia;Yixuan Lin;Shunli Li;Ni Yan;Yao Xie;Mengru He;Xuetao Guo;Lingyan Zhu - 通讯作者:
Lingyan Zhu
Conformal prediction set for time-series
时间序列的共形预测集
- DOI:
10.48550/arxiv.2206.07851 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Chen Xu;Yao Xie - 通讯作者:
Yao Xie
Conformal prediction for multi-dimensional time series by ellipsoidal sets
椭球集多维时间序列的共形预测
- DOI:
10.48550/arxiv.2403.03850 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Chen Xu;Hanyang Jiang;Yao Xie - 通讯作者:
Yao Xie
Poisson matrix completion
泊松矩阵完成
- DOI:
10.1109/isit.2015.7282774 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yang Cao;Yao Xie - 通讯作者:
Yao Xie
Deep Learning Fluorescence Imaging of Visible to NIR‐II Based on Modulated Multimode Emissions Lanthanide Nanocrystals
基于调制多模发射镧系元素纳米晶体的可见光到 NIR™II 的深度学习荧光成像
- DOI:
10.1002/adfm.202206802 - 发表时间:
2022-08 - 期刊:
- 影响因子:19
- 作者:
Yapai Song;Mengyang Lu;Yao Xie;Guotao Sun;Jiabo Chen;Hongxin Zhang;Xin Liu;Fan Zhang;Lining Sun - 通讯作者:
Lining Sun
Yao Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yao Xie', 18)}}的其他基金
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1A: MapQ: Mapping Quality of Coverage in Mobile Broadband Networks using Latent Gaussian Process Models
合作研究:IMR:MM-1A:MapQ:使用潜在高斯过程模型映射移动宽带网络的覆盖质量
- 批准号:
2220387 - 财政年份:2022
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
Sequential Detection and Prediction for Solar Situation Awareness in Power Networks
电力网络中太阳态势感知的顺序检测和预测
- 批准号:
1938106 - 财政年份:2019
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
ATD: Scanning Dynamic Spatial-Temporal Discrete Events for Threat Detection
ATD:扫描动态时空离散事件以进行威胁检测
- 批准号:
1830210 - 财政年份:2018
- 资助金额:
$ 110万 - 项目类别:
Continuing Grant
CAREER: Quick Detection for Streaming Data Over Dynamic Networks
职业:快速检测动态网络上的流数据
- 批准号:
1650913 - 财政年份:2017
- 资助金额:
$ 110万 - 项目类别:
Continuing Grant
CyberSEES: Type 2: Collaborative Research: Real-time Ambient Noise Seismic Imaging for Subsurface Sustainability
CyberSEES:类型 2:协作研究:用于地下可持续性的实时环境噪声地震成像
- 批准号:
1442635 - 财政年份:2015
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
NSF Student Travel Grant for the 10th ACM International Conference on Underwater Networks and System (WUWNet'15)
NSF 学生旅费资助第十届 ACM 国际水下网络和系统会议 (WUWNet15)
- 批准号:
1551297 - 财政年份:2015
- 资助金额:
$ 110万 - 项目类别:
Standard Grant
相似国自然基金
基于统计假设检验和贝叶斯方法的网络社区结构分析和标签预测
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于统计假设检验和贝叶斯方法的网络社区结构分析和标签预测
- 批准号:12201004
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
半参数因果推断的在弱假设下的理论、方法与应用:诚实的统计推断及与深度学习方法的融合
- 批准号:12101397
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
半参数因果推断的在弱假设下的理论、方法与应用:诚实的统计推断及与深度学习方法的融合
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
含测量误差相依函数型数据的线性模型的统计推断及应用
- 批准号:11901286
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Modeling functional genomics of susceptibility to the persistent effects of environmental toxins in an elderly rural Indiana neurodegenerative cohort
印第安纳州农村老年人神经退行性队列对环境毒素持续影响易感性的功能基因组学建模
- 批准号:
10337727 - 财政年份:2022
- 资助金额:
$ 110万 - 项目类别:
An Attempt to Improve Empirical Research in Economics Focusing on Statistical Hypothesis Testing
以统计假设检验为重点改进经济学实证研究的尝试
- 批准号:
22K18530 - 财政年份:2022
- 资助金额:
$ 110万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Data analysis tools for leveraging massive public data to improve hypothesis-driven research
数据分析工具,利用大量公共数据来改进假设驱动的研究
- 批准号:
10598130 - 财政年份:2022
- 资助金额:
$ 110万 - 项目类别:
Modeling functional genomics of susceptibility to the persistent effects of environmental toxins in an elderly rural Indiana neurodegenerative cohort
印第安纳州农村老年人神经退行性队列对环境毒素持续影响易感性的功能基因组学建模
- 批准号:
10705018 - 财政年份:2022
- 资助金额:
$ 110万 - 项目类别:
Placental CRH and child cardiovascular disease risk and obesogenic eating behaviors
胎盘 CRH 与儿童心血管疾病风险和肥胖饮食行为
- 批准号:
10538061 - 财政年份:2022
- 资助金额:
$ 110万 - 项目类别: