Bridging Statistical Hypothesis Tests and Deep Learning for Reliability and Computational Efficiency

连接统计假设检验和深度学习以提高可靠性和计算效率

基本信息

  • 批准号:
    2134037
  • 负责人:
  • 金额:
    $ 110万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

This project aims to bridge two fundamental areas — statistical hypothesis testing and deep learning — through developing reliable machine learning and computationally efficient modern hypothesis tests. The benefit of such a bridge goes both ways: on the one hand, it will enable the leveraging of deep learning to develop efficient and powerful testing tools for high-dimensional and complex data; on the other hand, it supports the use of testing methodologies to develop principled validation tools for machine learning models and provide a theoretical foundation of deep models themselves. The work will address critical challenges in making deep learning-based algorithms applicable and trustworthy for making discoveries from data, akin to the role that hypothesis testing has played in the past decades. The investigators will provide research opportunities for graduate and undergraduate students and develop pedagogical materials for graduate-level and undergraduate-level courses on machine learning and data science. The theoretical and computational outcomes of the project are expected to benefit research and development in industry, government, and national labs. The research project targets fundamental challenges in the cutting-edge research areas of statistical hypothesis tests. The topics include robust hypothesis tests, non-parametric tests (high-dimensional setting), goodness-of-fit tests, sequential tests (including sequential change-point detection), and tests for non-identically-independently-districtbuted (i.i.d.) data. The research plan consists of four highly integrated thrusts: (1) Develop deep learning-based robust hypothesis tests, provide performance guarantees, and develop efficient computational methods to leverage modern optimization. (2) Develop deep-learning-based non-parametric two-sample tests that exploit low-dimensional structure in data. (3) Develop model diagnosis tools for deep learning models such as goodness-of-fit tests. (4) Develop learning-based hypothesis tests for sequential and observational data (non-i.i.d.). The answers to the questions under study will also benefit several closely related areas, including robust machine learning and domain adaptation. The research is expected to result in powerful tools for a wide range of applications and advance knowledge in other scientific and engineering domains such as single-cell RNA sequencing data analysis, monitoring critical national infrastructures such as power grids and networks, smart logistic networks, and disease outbreak detection. The research components will be tightly integrated with educational activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过开发可靠的机器学习和计算高效的现代假设测试,在统计假设检验和深度学习这两个基本领域之间架起一座桥梁。这种桥梁的好处是双向的:一方面,它将使深度学习能够利用深度学习为高维和复杂数据开发高效而强大的测试工具;另一方面,它支持使用测试方法来开发机器学习模型的原则性验证工具,并为深度模型本身提供理论基础。这项工作将解决基于深度学习的算法在从数据中发现时适用和值得信赖的关键挑战,类似于假设检验在过去几十年中所发挥的作用。研究人员将为研究生和本科生提供研究机会,并为研究生和本科生水平的机器学习和数据科学课程开发教学材料。该项目的理论和计算结果预计将有利于工业、政府和国家实验室的研究和开发。该研究项目针对的是统计假设检验前沿研究领域的根本挑战。主题包括稳健假设检验、非参数检验(高维设置)、拟合度检验、序贯检验(包括序贯变点检测)和非相同-独立分区(I.I.D.)检验。数据。该研究计划包括四个高度集成的推进:(1)开发基于深度学习的稳健假设检验,提供性能保证,并开发高效的计算方法来利用现代优化。(2)开发基于深度学习的非参数两样本测试,利用数据中的低维结构。(3)开发适合深度学习模型的模型诊断工具,如拟合度检验。(4)为序贯数据和观测数据(非I.I.D.)开发基于学习的假设检验。正在研究的问题的答案也将使几个密切相关的领域受益,包括稳健的机器学习和领域适应。预计这项研究将产生广泛应用的强大工具,并促进其他科学和工程领域的知识,如单细胞RNA测序数据分析、监测电网和网络等关键国家基础设施、智能物流网络和疾病爆发检测。研究部分将与教育活动紧密结合。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Data-Driven Approach to Robust Hypothesis Testing Using Sinkhorn Uncertainty Sets
Effective Minkowski Dimension of Deep Nonparametric Regression: Function Approximation and Statistical Theories
  • DOI:
    10.48550/arxiv.2306.14859
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zixuan Zhang;Minshuo Chen;Mengdi Wang;Wenjing Liao;Tuo Zhao
  • 通讯作者:
    Zixuan Zhang;Minshuo Chen;Mengdi Wang;Wenjing Liao;Tuo Zhao
Non-stationary spatio-temporal point process modeling for high-resolution COVID-19 data
Spatio-temporal point processes with deep non-stationary kernels
  • DOI:
    10.48550/arxiv.2211.11179
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zheng Dong;Xiuyuan Cheng;Yao Xie
  • 通讯作者:
    Zheng Dong;Xiuyuan Cheng;Yao Xie
Neural Spectral Marked Point Processes
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shixiang Zhu;Haoyun Wang;Xiuyuan Cheng;Yao Xie
  • 通讯作者:
    Shixiang Zhu;Haoyun Wang;Xiuyuan Cheng;Yao Xie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yao Xie其他文献

Behavioral changes and neuronal damage in rhesus monkeys after ten weeks ketamine administration involve prefrontal cortex dopamine D2 receptor and dopamine transporter
施用氯胺酮十周后恒河猴的行为变化和神经元损伤涉及前额皮质多巴胺 D2 受体和多巴胺转运蛋白
  • DOI:
    10.1016/j.neuroscience.2019.07.022
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Zongbo Sun;Ye Ma;Lei Xie;Jinzhuang Huang;Shouxing Duan;Ruiwei Guo;Yao Xie;Junyao Lv;Zhirong Lin;Shuhua Ma
  • 通讯作者:
    Shuhua Ma
Nearly second-order optimality of online joint detection and estimation via one-sample update schemes
通过单样本更新方案实现在线联合检测和估计的近二阶最优性
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Cao;Liyan Xie;Yao Xie;Huan Xu
  • 通讯作者:
    Huan Xu
The Predictive Value of On-treatment Virological Response for Sustained Virological Response in C h r o n i c H e p a i i s Personalized Treatment Program
治疗中病毒学反应对慢性肝炎持续病毒学反应的预测价值是个性化治疗计划
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minghui Li;Yao Xie;Yao Lu;Guo;Lu Zhang;G. Shen;L. Zhuang;Ju;Hu;J. Dong;Cai;Lei;Li;Xing;Min Yang;;Zhong Wu;Hui Zhao;Shu;Jun Cheng;Dao
  • 通讯作者:
    Dao
Development of Intra-Aortic Balloon Pump with Vascular Stent and Vitro Simulation Verification
带血管支架的主动脉内球囊泵的研制及体外模拟验证
Interpretable Generative Neural Spatio-Temporal Point Processes
可解释的生成神经时空点过程
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shixiang Zhu;Shuang Li;Yao Xie
  • 通讯作者:
    Yao Xie

Yao Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yao Xie', 18)}}的其他基金

Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Collaborative Research: IMR: MM-1A: MapQ: Mapping Quality of Coverage in Mobile Broadband Networks using Latent Gaussian Process Models
合作研究:IMR:MM-1A:MapQ:使用潜在高斯过程模型映射移动宽带网络的覆盖质量
  • 批准号:
    2220387
  • 财政年份:
    2022
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
Sequential Detection and Prediction for Solar Situation Awareness in Power Networks
电力网络中太阳态势感知的顺序检测和预测
  • 批准号:
    1938106
  • 财政年份:
    2019
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
ATD: Scanning Dynamic Spatial-Temporal Discrete Events for Threat Detection
ATD:扫描动态时空离散事件以进行威胁检测
  • 批准号:
    1830210
  • 财政年份:
    2018
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant
CAREER: Quick Detection for Streaming Data Over Dynamic Networks
职业:快速检测动态网络上的流数据
  • 批准号:
    1650913
  • 财政年份:
    2017
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant
CyberSEES: Type 2: Collaborative Research: Real-time Ambient Noise Seismic Imaging for Subsurface Sustainability
Cyber​​SEES:类型 2:协作研究:用于地下可持续性的实时环境噪声地震成像
  • 批准号:
    1442635
  • 财政年份:
    2015
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for the 10th ACM International Conference on Underwater Networks and System (WUWNet'15)
NSF 学生旅费资助第十届 ACM 国际水下网络和系统会议 (WUWNet15)
  • 批准号:
    1551297
  • 财政年份:
    2015
  • 资助金额:
    $ 110万
  • 项目类别:
    Standard Grant

相似海外基金

An Attempt to Improve Empirical Research in Economics Focusing on Statistical Hypothesis Testing
以统计假设检验为重点改进经济学实证研究的尝试
  • 批准号:
    22K18530
  • 财政年份:
    2022
  • 资助金额:
    $ 110万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Direct verification and statistical analysis of binding by synchrony hypothesis
同步假设结合的直接验证和统计分析
  • 批准号:
    21K19803
  • 财政年份:
    2021
  • 资助金额:
    $ 110万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Statistical Hypothesis Testing for Roughness of Volatility
波动率粗糙度的统计假设检验
  • 批准号:
    19K23224
  • 财政年份:
    2019
  • 资助金额:
    $ 110万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Alloy Design of High-Entropy Alloys Based on Screening Hypothesis and Statistical Decision Principle and Fabrications of New Alloys
基于筛选假设和统计决策原理的高熵合金合金设计及新型合金的制备
  • 批准号:
    17H03375
  • 财政年份:
    2017
  • 资助金额:
    $ 110万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Application of Value of Statistical Life to Examining Environmental Kuznets Curve Hypothesis and Political Suggestion about Water Supply and Sewage System in Developing Countries
应用统计寿命值检验环境库兹涅茨曲线假说及发展中国家供水和污水处理系统的政治建议
  • 批准号:
    17H01938
  • 财政年份:
    2017
  • 资助金额:
    $ 110万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
INGOT: a family of statistical computing algorithms for hypothesis-driven imaging genomic and longitudinal neuroimaging analysis
INGOT:一系列统计计算算法,用于假设驱动的成像基因组和纵向神经影像分析
  • 批准号:
    9044371
  • 财政年份:
    2015
  • 资助金额:
    $ 110万
  • 项目类别:
INGOT: a family of statistical computing algorithms for hypothesis-driven imaging genomic and longitudinal neuroimaging analysis
INGOT:一系列统计计算算法,用于假设驱动的成像基因组和纵向神经影像分析
  • 批准号:
    9147599
  • 财政年份:
    2015
  • 资助金额:
    $ 110万
  • 项目类别:
INGOT: a family of statistical computing algorithms for hypothesis-driven imaging genomic and longitudinal neuroimaging analysis
INGOT:一系列统计计算算法,用于假设驱动的成像基因组和纵向神经影像分析
  • 批准号:
    9322199
  • 财政年份:
    2015
  • 资助金额:
    $ 110万
  • 项目类别:
Study on robust statistical hypothesis testing procedures in high-dimensional settings
高维环境下稳健统计假设检验程序的研究
  • 批准号:
    26730020
  • 财政年份:
    2014
  • 资助金额:
    $ 110万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
III: Small: Parametric Statistical Models to Support Statistical Hypothesis Testing over Graphs
III:小型:支持图形统计假设检验的参数统计模型
  • 批准号:
    1219015
  • 财政年份:
    2012
  • 资助金额:
    $ 110万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了