Numerical methods for high-index DAEs with applications to multibody dynamics

高指数 DAE 的数值方法及其在多体动力学中的应用

基本信息

  • 批准号:
    RGPIN-2019-07054
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Systems containing differential and algebraic equations, or DAEs, arise in many engineering applications. The index of a DAE measures how difficult is to solve it numerically: index-3 and above is considered hard. Over the last fifteen years, N. Nedialkov has been working on structural analysis and numerical integration of DAEs of an arbitrary index. Recently, he has been applying algorithmic differentiation (AD) and his high-index DAE solver DAETS (DAE by Taylor series) to solve directly mechanical systems from a Lagrangian formulation. The long-term objectives of this research program are (a) to build the theory and implementation of a 3D simulation tool based on Lagrangian mechanics, where the equations of motion (EM) are not derived explicitly, on modeling in cartesian coordinates, on automatic differentiation (AD), and on DAETS, and (b) to produce a monograph describing this work, where mechanics is presented based on the Lagrangian function, constraints on motion, external forces, etc., and without the complex and cumbersome derivations of EM that are ubiquitous in mechanics texts. The objectives of this proposal are to lay the foundation for (a) and (b) by enhancing the efficiency and capabilities of DAETS through developing methods for block-wise integration of systems of DAEs, defect control of DAE solution, and event location and hybrid DAEs, and by developing 3D mechanism and Lagrangian facilities. Solving arbitrary index DAEs directly, without index reduction, has been a difficult, if not impossible task. This work will lead to a complete, efficient high-index solver (equipped with reliable defect control and event location) that can be used by academia and industry. When modeling and simulating mechanical systems, much effort is needed to produce a constraint-free Lagrangian formulation as a system of ordinary differential equations, while a cartesian, constraint formulation is usually simpler and easier to derive. The latter, however, have been much harder to simulate, which is no longer the case with DAETS. Deriving the EM, typically done by a symbolic algebra tool, is not needed: they are evaluated at runtime, and purely through AD. Even for simple problems, the output of the symbolically differentiated Lagrangian can become large in size, leading to inefficient evaluation of the derivatives, while their evaluation through AD avoids such a growth in size. The proposed research will lead to advances in numerical methods and software for reliable and efficient integration of arbitrary index DAEs and in solving Lagrangian mechanics directly. Anticipated applications are in the areas of computer graphics, robotics, biomechanics, and mechanics simulations in general. The major anticipated impact is on how mechanics is taught, modeled, and simulated: from a
包含微分方程和代数方程(DAEs)的系统在许多工程应用中出现。DAE的指数衡量的是数值解决问题的困难程度:指数为3及以上被认为是困难的。在过去的15年中,N. Nedialkov一直致力于任意指数的dae的结构分析和数值积分。最近,他一直在应用算法微分(AD)和他的高指数DAE求解器DAETS (DAE by Taylor series)从拉格朗日公式直接求解机械系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nedialkov, Nedialko其他文献

Nedialkov, Nedialko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nedialkov, Nedialko', 18)}}的其他基金

Numerical methods for high-index DAEs with applications to multibody dynamics
高指数 DAE 的数值方法及其在多体动力学中的应用
  • 批准号:
    RGPIN-2019-07054
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical methods for high-index DAEs with applications to multibody dynamics
高指数 DAE 的数值方法及其在多体动力学中的应用
  • 批准号:
    RGPIN-2019-07054
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical methods for high-index DAEs with applications to multibody dynamics
高指数 DAE 的数值方法及其在多体动力学中的应用
  • 批准号:
    RGPIN-2019-07054
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
  • 批准号:
    RGPIN-2014-06582
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
  • 批准号:
    RGPIN-2014-06582
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
  • 批准号:
    RGPIN-2014-06582
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
  • 批准号:
    RGPIN-2014-06582
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical methods for simulating biofilm models
模拟生物膜模型的数值方法
  • 批准号:
    485842-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Engage Grants Program
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
  • 批准号:
    RGPIN-2014-06582
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical algorithms and software for high-index differential-algebraic equations
高指数微分代数方程的数值算法和软件
  • 批准号:
    227816-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
  • 批准号:
    10824044
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
Tumor-Targeted Multimodality Nanoscale Coordination Polymers for Chemo-Immunotherapy of Metastatic Colorectal Cancer
用于转移性结直肠癌化疗免疫治疗的肿瘤靶向多模态纳米配位聚合物
  • 批准号:
    10639649
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Assessing the real-world impact of a low nicotine product standard for smoked tobacco in New Zealand
评估新西兰低尼古丁产品标准对吸食烟草的现实影响
  • 批准号:
    10665851
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Sleep-Wake Cycles of Individuals with Inflammatory Bowel Disease
炎症性肠病患者的睡眠-觉醒周期
  • 批准号:
    10604701
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Increasing initiation of evidence-based weight loss treatment
越来越多地开始开展循证减肥治疗
  • 批准号:
    10735201
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Addressing sleep health disparities from within: A community-engaged study to understanding sleep and cardiometabolic disease risk among women of color
从内部解决睡眠健康差异:一项社区参与的研究,旨在了解有色人种女性的睡眠和心脏代谢疾病风险
  • 批准号:
    10815470
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Multi-level intervention to promote healthy beverage choices among Navajo families
多层次干预促进纳瓦霍家庭选择健康饮料
  • 批准号:
    10776269
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Neqkiuryaraq - The Art of Preparing Food
Neqkiuryaraq - 准备食物的艺术
  • 批准号:
    10781483
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Genome Editing Therapy for Usher Syndrome Type 3
针对 3 型亚瑟综合症的基因组编辑疗法
  • 批准号:
    10759804
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Sedentary behavior, physical activity, and 24-hour behavior in pregnancy and offspring health: the Pregnancy 24/7 Offspring Study
久坐行为、体力活动和 24 小时行为对怀孕和后代健康的影响:怀孕 24/7 后代研究
  • 批准号:
    10654333
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了