Exotic physics in quantum Hall and spin liquid systems

量子霍尔和自旋液体系统中的奇异物理

基本信息

  • 批准号:
    RGPIN-2020-04688
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

What are the possible phases of matter? This is a central question of condensed matter physics. Historically two organizing principles have been used: the free electron band theory and the theory of spontaneous symmetry breaking. A modern theme of quantum condensed matter physics is the quest to understand interacting many-body systems beyond these two paradigms. Two prominent examples are the fractional quantum Hall effect and quantum spin liquids. The most striking common feature of these systems is electron fractionalization: at low temperature the electrons behave as if they are “split” into smaller fractions (such as particles with fractional electric charge or statistics). This demonstrates the power of the principle of emergence: the collective behavior of a many-body system can be drastically different from its microscopic constituents. From a modern point of view electron fractionalization ultimately come from long-range quantum entanglement. My research program will be focused on better understanding various emergent phenomena due to long-range entanglement such as fractionalization. In the next five years I would like to better understand (1) what are the allowed patterns of fractionalization in a given system? and (2) what are the effects of disorder on the physics of fractionalization? These questions are well motivated by recent experimental and theoretical developments. For example, a natural context for question (1) is to understand different possible patterns of fractionalization in a particularly interesting system known as the 5/2 quantum Hall state. An answer to this question would help establishing the 5/2 state unambiguously as a non-abelian topological order, potentially useful for future quantum information processing. Question (2) is motivated by the study of quantum spin liquids: during the past decade many "candidate" spin liquid materials have been discovered, but most of them tend to be rather dirty. An understanding of disorder effects in quantum spin liquids will therefore be crucial for bridging theories with experiments. The study of long-range quantum entanglement in many-body systems not only bears deep conceptual value on its own, but could also pave the way for future technological developments, ranging from quantum information processing to materials with previously unconceived electric properties - just like how the theories of free electrons and symmetry breaking laid the foundations for physics of semiconductors, magnets and superconductors, all of which played major roles in the technological revolution last century. This research program will train around four Ph.D. students. They will acquire various analytic and numerical skills in modern physics (such as those in quantum field theory, statistical mechanics and solid state physics). More importantly they will learn to think and communicate like physicists. All these will benefit their future career, in academia or in technology-related industry.
物质的可能相是什么?这是凝聚态物理学的中心问题。历史上有两个组织原则被使用:自由电子带理论和自发对称性破缺理论。量子凝聚态物理学的一个现代主题是寻求理解超越这两种范式的相互作用的多体系统。两个突出的例子是分数量子霍尔效应和量子自旋液体。这些系统最显著的共同特征是电子分馏:在低温下,电子表现得好像它们被“分裂”成更小的部分(例如具有分数电荷或统计的粒子)。这证明了涌现原理的力量:多体系统的集体行为可以与其微观组成部分截然不同。从现代的观点来看,电子的碎裂最终来自于长程量子纠缠。我的研究计划将集中在更好地理解各种新兴现象,由于远程纠缠,如分馏。 在接下来的五年里,我想更好地理解(1)在给定的系统中,允许的细分模式是什么?(2)无序对分形物理学的影响是什么?最近的实验和理论发展很好地激发了这些问题。例如,问题(1)的一个自然背景是理解一个特别有趣的系统(称为5/2量子霍尔态)中不同的可能的分数化模式。这个问题的答案将有助于明确地建立5/2态作为非阿贝尔拓扑序,这对未来的量子信息处理可能有用。问题(2)是由量子自旋液体的研究激发的:在过去的十年中,许多“候选”自旋液体材料被发现,但它们中的大多数往往是相当脏的。因此,理解量子自旋液体中的无序效应对于将理论与实验联系起来至关重要。 对多体系统中长程量子纠缠的研究不仅本身具有深刻的概念价值,而且还可以为未来的技术发展铺平道路,从量子信息处理到具有以前无法想象的电特性的材料-就像自由电子和对称性破缺理论为半导体,磁体和超导体奠定了基础一样,这些都在上个世纪的技术革命中发挥了重要作用。 该研究项目将培养约4名博士。学生他们将获得现代物理学(如量子场论,统计力学和固态物理学)的各种分析和数值技能。更重要的是,他们将学会像物理学家一样思考和交流。所有这些都将有利于他们未来的职业生涯,在学术界或与科技相关的行业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wang, Chong其他文献

Release factor one is nonessential in Escherichia coli.
  • DOI:
    10.1021/cb300229q
  • 发表时间:
    2012-08-17
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Johnson, David B. F.;Wang, Chong;Xu, Jianfeng;Schultz, Matthew D.;Schmitz, Robert J.;Ecker, Joseph R.;Wang, Lei
  • 通讯作者:
    Wang, Lei
Postoperative Complications of Free Flap Reconstruction in Moderate-Advanced Head and Neck Squamous Cell Carcinoma: A Prospective Cohort Study Based on Real-World Data.
  • DOI:
    10.3389/fonc.2022.792462
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Li, Delong;Wang, Chong;Wei, Wei;Li, Bo;Liu, Huan;Cheng, Aoming;Niu, Qifang;Han, Zhengxue;Feng, Zhien
  • 通讯作者:
    Feng, Zhien
Complexation of iron by salicylic acid and its effect on atrazine photodegradation in aqueous solution
水杨酸络合铁及其对水溶液中莠去津光降解的影响
VFM: Visual Feedback Model for Robust Object Recognition
VFM:用于鲁棒对象识别的视觉反馈模型
CircHIPK3 negatively regulates autophagy by blocking VCP binding to the Beclin 1 complex in bladder cancer.
  • DOI:
    10.1007/s12672-023-00689-0
  • 发表时间:
    2023-06-03
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Wang, Chong;Liu, Tiantian;Wang, Jiawei;Cheng, Chao;Zhang, Ze;Zhang, Jingwei;Huang, Houbao;Li, Yawei
  • 通讯作者:
    Li, Yawei

Wang, Chong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wang, Chong', 18)}}的其他基金

Exotic physics in quantum Hall and spin liquid systems
量子霍尔和自旋液体系统中的奇异物理
  • 批准号:
    RGPIN-2020-04688
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Exotic physics in quantum Hall and spin liquid systems
量子霍尔和自旋液体系统中的奇异物理
  • 批准号:
    RGPIN-2020-04688
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Exotic physics in quantum Hall and spin liquid systems
量子霍尔和自旋液体系统中的奇异物理
  • 批准号:
    DGECR-2020-00203
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Chinese Physics B
  • 批准号:
    11224806
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Physics 出版资助
  • 批准号:
    11224805
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
tau轻子衰变与新物理模型唯象研究
  • 批准号:
    11005033
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
Chinese physics B
  • 批准号:
    11024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
新强子态研究
  • 批准号:
    10905053
  • 批准年份:
    2009
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
高能强子对撞机Higgs衰变到双光子末态的寻找
  • 批准号:
    10975134
  • 批准年份:
    2009
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目
强子对撞机上新物理信号的多轻子末态研究
  • 批准号:
    10675110
  • 批准年份:
    2006
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
强子对撞物理中的R宇称现象学研究
  • 批准号:
    10575095
  • 批准年份:
    2005
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
Conference: Quantum Topology, Quantum Information and connections to Mathematical Physics
会议:量子拓扑、量子信息以及与数学物理的联系
  • 批准号:
    2350250
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
CAREER: Quantum Information Theory of Many-body Physics
职业:多体物理的量子信息论
  • 批准号:
    2337931
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
Conference: 2023 Atomic Physics GRC and GRS:Precision Measurements, Quantum Science and Ultracold Phenomena in Atomic and Molecular Physics
会议:2023原子物理GRC和GRS:原子和分子物理中的精密测量、量子科学和超冷现象
  • 批准号:
    2313762
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
  • 批准号:
    23K13008
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
  • 批准号:
    10678562
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
ExpandQISE: Track 2: A Quantum Science Education and Research Program for HBCUs: Exotic Physics and Applications of Solid-State Qubits
ExpandQISE:轨道 2:HBCU 的量子科学教育和研究计划:奇异物理学和固态量子位的应用
  • 批准号:
    2329067
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
Nanoscale quantum physics and quantum information processing with semiconductor quantum dots
纳米量子物理与半导体量子点的量子信息处理
  • 批准号:
    2891758
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Studentship
Creation of quantum molecular electronics by fusion of advanced materials chemistry a nd quantum solid-state physics
通过先进材料化学和量子固体物理学的融合创造量子分子电子学
  • 批准号:
    23K20039
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Leading Research )
Probing the Quantum Vacuum with High Power Laser and 4th Generation Light Sources in the Search for New Physics
用高功率激光和第四代光源探测量子真空,寻找新物理
  • 批准号:
    EP/X01133X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了