Generating and Maintaining Multi-Level 3D City Models Using Advanced Multi-Modal Image Processing
使用高级多模态图像处理生成和维护多层次 3D 城市模型
基本信息
- 批准号:RGPIN-2020-04698
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
3D city models that present urban objects and structures, such as buildings, in a three-dimensional geometry are being increasingly used for a wide range of applications, including smart cities, urban planning, disaster management and security.
3D city models are generated in different Levels of Detail (LoD); for example, LoD1 only contains a rough block representation of buildings while LoD3 contains the delicate architectural structures as well as the location of the windows and doors within buildings. The LoD3 models deal with the exterior of buildings and urban objects, while LoD4 focuses on building interiors. Different applications require different levels of detail. Thus, it is necessary to have multi-level representations of 3D city models to accommodate various requirements.
Although 3D city models are vital in different Geomatics and Urban Management applications, producing the models with high LoDs (2) is still costly and labor-intensive thus, the development rate of such models for cities is prolonged. Consequently, only a few cities in the world have limited multi-level 3D city models (mainly up to LoD2). Furthermore, maintaining 3D city models is currently very challenging, hence in many applications, instead of updating, 3D city models are regenerated after a certain period.
The long term objective of my research program is to develop breakthrough methods to automatically generate and maintain standards-compliant multi-level 3D city models, using a photogrammetric basis combined by learning methods in image processing.
The short term objectives of this research program are to develop automatic methods to (1) generate 3D city models, (2) detect changes in the existing models and (3) update the models to maintain the LoD3 city models (focusing on building exteriors). My grad students and I will combine modern learning techniques, i.e. machine learning and deep learning, and basic photogrammetric concepts to further develop what we have achieved up to date in terms of change detection and sensor modeling to pursue the short goals of this research program. For this purpose, we will use images taken from different angles (e.g. oblique and nadir), different platforms (e.g. terrestrial and airborne) and various sensors (e.g. multispectral, LiDAR) that are referred to as multi-modal images.
To pursue the short term objectives, I am going to hire and train 9 HQP in total (2 PhD, 2 MSc, 5 BSc) in the field of Remote Sensing, Photogrammetry and GIS working at the Department of Geodesy and Geomatics Engineering, University of New Brunswick.
This initiative will place Canada within the group of leading countries in this field, enabling Canadians to benefit from the opportunities provided by 3D city models in different applications such as disaster management and smart cities.
以三维几何形状呈现城市物体和建筑物(如建筑物)的3D城市模型越来越多地用于各种应用,包括智能城市,城市规划,灾害管理和安全。
3D城市模型以不同的细节层次(LoD)生成;例如,LoD1仅包含建筑物的粗略块表示,而LoD3包含精细的建筑结构以及建筑物内门窗的位置。LoD3模型处理建筑物和城市物体的外部,而LoD4侧重于建筑物内部。不同的应用程序需要不同的细节级别。因此,有必要具有3D城市模型的多层次表示以适应各种需求。
虽然3D城市模型在不同的地理信息和城市管理应用中至关重要,但生产具有高LOD的模型仍然是昂贵的和劳动密集型的,因此,这种城市模型的开发速度被延长。因此,世界上只有少数城市拥有有限的多层3D城市模型(主要高达LoD 2)。此外,维护3D城市模型目前非常具有挑战性,因此在许多应用中,3D城市模型在一定时间后重新生成,而不是更新。
我的研究计划的长期目标是开发突破性的方法来自动生成和维护符合标准的多层次3D城市模型,使用摄影测量基础结合图像处理中的学习方法。
该研究项目的短期目标是开发自动方法,以(1)生成3D城市模型,(2)检测现有模型的变化,(3)更新模型以维护LoD3城市模型(侧重于建筑物外观)。我和我的研究生将结合联合收割机现代学习技术,即机器学习和深度学习,以及基本的摄影测量概念,进一步发展我们在变化检测和传感器建模方面所取得的成就,以实现本研究项目的短期目标。为此,我们将使用从不同角度(例如倾斜和天底),不同平台(例如陆地和空中)和各种传感器(例如多光谱,LiDAR)拍摄的图像,这些图像被称为多模态图像。
为了实现短期目标,我将在新不伦瑞克大学大地测量和地理信息工程系雇用和培训9名遥感、摄影测量和地理信息系统领域的HQP(2名博士,2名硕士,5名学士)。
这一举措将使加拿大成为该领域的领先国家之一,使加拿大人能够受益于3D城市模型在灾害管理和智慧城市等不同应用中提供的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jabari, Shabnam其他文献
RPC-Based Coregistration of VHR Imagery for Urban Change Detection
- DOI:
10.14358/pers.82.7.521 - 发表时间:
2016-07-01 - 期刊:
- 影响因子:1.3
- 作者:
Jabari, Shabnam;Zhang, Yun - 通讯作者:
Zhang, Yun
Very High Resolution Satellite Image Classification Using Fuzzy Rule-Based Systems
- DOI:
10.3390/a6040762 - 发表时间:
2013-12-01 - 期刊:
- 影响因子:2.3
- 作者:
Jabari, Shabnam;Zhang, Yun - 通讯作者:
Zhang, Yun
A Multi-Feature Fusion Using Deep Transfer Learning for Earthquake Building Damage Detection
- DOI:
10.1080/07038992.2021.1925530 - 发表时间:
2021-05-24 - 期刊:
- 影响因子:2.6
- 作者:
Abdi, Ghasem;Jabari, Shabnam - 通讯作者:
Jabari, Shabnam
Jabari, Shabnam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jabari, Shabnam', 18)}}的其他基金
Generating and Maintaining Multi-Level 3D City Models Using Advanced Multi-Modal Image Processing
使用高级多模态图像处理生成和维护多层次 3D 城市模型
- 批准号:
RGPIN-2020-04698 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Generating and Maintaining Multi-Level 3D City Models Using Advanced Multi-Modal Image Processing
使用高级多模态图像处理生成和维护多层次 3D 城市模型
- 批准号:
RGPIN-2020-04698 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Generating and Maintaining Multi-Level 3D City Models Using Advanced Multi-Modal Image Processing
使用高级多模态图像处理生成和维护多层次 3D 城市模型
- 批准号:
DGECR-2020-00388 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Launch Supplement
相似海外基金
Maintaining Human Expertise in an AI-driven World
在人工智能驱动的世界中保持人类的专业知识
- 批准号:
DE240100269 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Early Career Researcher Award
Social isolation and loneliness as factors maintaining domestic violence
社会孤立和孤独是维持家庭暴力的因素
- 批准号:
DE240100584 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Early Career Researcher Award
Balancing electoral manipulation and maintaining legitimacy: The Lao People's Revolutionary Party's mechanism for resolving electoral dilemmas.
平衡选举操纵与维护合法性:老挝人民革命党解决选举困境的机制
- 批准号:
23K01269 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Maintaining Deep Ocean Observations: The ALOHA Cabled Observatory
维持深海观测:ALOHA 有线观测站
- 批准号:
2220319 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Continuing Grant
Maintaining Conformance with the Manufactured Food Regulatory Program Standards (MFRPS) and Advancing an Integrated Food Safety System.
保持符合制成品监管计划标准 (MFRPS) 并推进综合食品安全体系。
- 批准号:
10828175 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Development of a robotic cushion to promote optimal posture for preventing aspiration and maintaining comfort during sleep
开发机器人坐垫,以促进最佳姿势,防止误吸并保持睡眠期间的舒适度
- 批准号:
23K18409 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Maintaining behavior change: A 6-year follow-up of adolescent 'night-owls' and an evaluation of a habit-based sleep health intervention
维持行为改变:对青少年“夜猫子”进行 6 年随访以及基于习惯的睡眠健康干预评估
- 批准号:
10701399 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Maintaining opioid analgesia and preventing addiction with hypocretin antagonism
通过下丘脑分泌素拮抗作用维持阿片类药物镇痛并预防成瘾
- 批准号:
10713175 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
The Role of Tcf7l2 in maintaining liver zonation and metabolic homeostasis
Tcf7l2 在维持肝脏分区和代谢稳态中的作用
- 批准号:
10566884 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
How does daily exercise contribute to maintaining the elasticity of the heart?
日常锻炼如何有助于保持心脏的弹性?
- 批准号:
23K10603 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)