Manipulating Models in Artificial Intelligence and Operations Research

人工智能和运筹学中的操纵模型

基本信息

  • 批准号:
    RGPIN-2020-04039
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Algorithmic decision making is widespread from the execution of supply chains to robot planning. My program will research the creation, learning, evaluation, hybridization, application, and orchestration of the models and solvers of AI and OR to push problem solving power beyond the current state of the art and to develop a fundamental mathematical and empirical understanding of such manipulation. I will work at the intersection of AI and OR within three themes. In each, I will bring together theory and algorithms from disparate subfields of computer science and mathematics to provide new perspectives and spur novel avenues of inquiry. Theme 1: Model Hierarchies in AI and OR. Complex problems are often attacked by breaking them into pieces. A problem is represented as a hierarchy of models where solving a higher level model defines a subspace at a lower level and solving a lower level model triggers refinement at the higher level. This approach, called abstraction in AI and decomposition in OR, appears in several variants (e.g., logic-based Benders decomposition, SAT Modulo Theory). I will seek a synthesis across domains, develop empirically driven theories, and create automated techniques for the dynamic creation and modification of model hierarchies. Theme 2: Model Manipulations for Sequence Generation. Modern machine learning approaches have shown substantial performance in sequence-to-sequence tasks. An ML model provides a probability distribution over the next token as the sequence is searched over. AI planning and combinatorial optimization also often generate sequences, guided by heuristic functions. This theme will develop and hybridize this intersection by investigating learned models in AI planning and combinatorial optimization, the combination of learned and built models, and the use and analysis of search techniques from AI planning, heuristic search, and combinatorial optimization for ML model decoding. Theme 3: Coordinating Algorithmic Decision Making Systems. Modern AI and OR systems require applications to be modeled, results to be interpreted, and the solvers to be coordinated as problems and contexts change. These functions have traditionally been done by highly trained humans. This theme will investigate the combination of cognitive models from AI, mixed initiative user interface design, and robot control architectures to develop an Optimization Agent to automate these model manipulations. The work in my Discovery program is aimed at conceptual level advances that can be implemented across multiple applications. These themes are informed and motivated by real world applications including advanced scheduling and logistics; robot task allocation; and scheduling for large-scale data centres. As part of my Discovery grant program, I am also proposing an application-based collaborative project to design, optimize, and operate the multi-modal transportation network of remote communities in Canada's North.
从供应链的执行到机器人规划,商业决策非常普遍。我的计划将研究AI和OR的模型和求解器的创建,学习,评估,混合,应用和编排,以推动解决问题的能力超越当前的技术水平,并发展对这种操作的基本数学和经验理解。 我将在三个主题中研究AI和OR的交叉点。在每一个,我将汇集来自计算机科学和数学的不同子领域的理论和算法,以提供新的视角和刺激新的探索途径。 主题1:AI和OR中的模型层次复杂的问题往往是通过把它们分解成几部分来解决的。 问题被表示为模型的层次结构,其中求解较高级别的模型在较低级别定义子空间,并且求解较低级别的模型触发较高级别的细化。这种方法在AI中称为抽象,在OR中称为分解,有几种变体(例如,基于逻辑的Benders分解,SAT模理论)。我将寻求跨领域的综合,开发经验驱动的理论,并创建用于动态创建和修改模型层次结构的自动化技术。 主题2:序列生成的模型操作。现代机器学习方法在序列到序列任务中表现出了很好的性能。ML模型在搜索序列时提供下一个令牌的概率分布。人工智能规划和组合优化也经常在启发式函数的指导下生成序列。本主题将通过研究人工智能规划和组合优化中的学习模型,学习和构建模型的组合,以及人工智能规划,启发式搜索和组合优化的搜索技术的使用和分析来开发和混合这个交叉点。 主题3:协调军事决策系统。现代AI和OR系统需要对应用程序进行建模,解释结果,并在问题和上下文发生变化时协调求解器。这些功能传统上由训练有素的人类完成。本主题将研究人工智能的认知模型,混合主动用户界面设计和机器人控制架构的组合,以开发优化代理来自动化这些模型操作。 在我的探索计划中的工作旨在概念层面的进步,可以在多个应用程序中实现。这些主题是由真实的世界的应用程序,包括先进的调度和物流,机器人任务分配和调度大型数据中心的通知和动机。作为我的发现资助计划的一部分,我还提出了一个基于应用的合作项目,以设计,优化和运营加拿大北部偏远社区的多式联运网络。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Beck, Chris其他文献

Bootstrapping a robot's kinematic model
  • DOI:
    10.1016/j.robot.2013.09.011
  • 发表时间:
    2014-03-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Broun, Alan;Beck, Chris;Melhuish, Chris
  • 通讯作者:
    Melhuish, Chris
TIME-SPACE TRADE-OFFS IN RESOLUTION: SUPERPOLYNOMIAL LOWER BOUNDS FOR SUPERLINEAR SPACE
  • DOI:
    10.1137/130914085
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Beame, Paul;Beck, Chris;Impagliazzo, Russell
  • 通讯作者:
    Impagliazzo, Russell

Beck, Chris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Beck, Chris', 18)}}的其他基金

Manipulating Models in Artificial Intelligence and Operations Research
人工智能和运筹学中的操纵模型
  • 批准号:
    RGPIN-2020-04039
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Manipulating Models in Artificial Intelligence and Operations Research
人工智能和运筹学中的操纵模型
  • 批准号:
    RGPIN-2020-04039
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid constraint generation approaches for industrial scheduling and logistics
工业调度和物流的混合约束生成方法
  • 批准号:
    517947-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Collaborative Research and Development Grants
AI Planning and Mathematical Programming
人工智能规划与数学规划
  • 批准号:
    RGPIN-2015-05072
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid constraint generation approaches for industrial scheduling and logistics
工业调度和物流的混合约束生成方法
  • 批准号:
    517947-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Collaborative Research and Development Grants
AI Planning and Mathematical Programming
人工智能规划与数学规划
  • 批准号:
    RGPIN-2015-05072
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
AI Planning and Mathematical Programming
人工智能规划与数学规划
  • 批准号:
    RGPIN-2015-05072
  • 财政年份:
    2017
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
AI Planning and Mathematical Programming
人工智能规划与数学规划
  • 批准号:
    RGPIN-2015-05072
  • 财政年份:
    2016
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
AI Planning and Mathematical Programming
人工智能规划与数学规划
  • 批准号:
    RGPIN-2015-05072
  • 财政年份:
    2015
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

AI4PEX: Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models
AI4PEX:人工智能和机器学习,用于增强地球系统模型中过程和极值的表示
  • 批准号:
    10103109
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    EU-Funded
An Artificial Intelligence Engineering System Analysis Assistant (Aiesaa) for auto-creation of integrated transmission-distribution grid models
用于自动创建综合输配电网模型的人工智能工程系统分析助手(Aiesaa)
  • 批准号:
    2329536
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
AI4PhotMod - Artificial Intelligence for parameter inference in Photosynthesis Models
AI4PhotMod - 用于光合作用模型中参数推断的人工智能
  • 批准号:
    BB/Y51388X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Grant
Bio-HhOST: Next Generation 3D Tissue Models: Bio-Hybrid Hierarchical Organoid-Synthetic Tissues (Bio-HhOST) Comprised of Live and Artificial Cells.
Bio-HhOST:下一代 3D 组织模型:由活细胞和人造细胞组成的生物混合分层类器官合成组织 (Bio-HhOST)。
  • 批准号:
    10106841
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    EU-Funded
Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models (AI4PEX)
人工智能和机器学习增强地球系统模型中过程和极值的表示(AI4PEX)
  • 批准号:
    10093450
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    EU-Funded
I-Corps: A Framework for Streamlining the Development and Deployment of Generative Artificial Intelligence (AI) Models on Enterprise Data
I-Corps:简化企业数据生成人工智能 (AI) 模型的开发和部署的框架
  • 批准号:
    2335828
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Understanding population level effects of artificial lighting on biodiversity - a novel interdisciplinary approach using bats as models
了解人工照明对生物多样性的人口水平影响——一种以蝙蝠为模型的新颖的跨学科方法
  • 批准号:
    NE/W005778/1
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Grant
Building better molecular models through artificial intelligence
通过人工智能建立更好的分子模型
  • 批准号:
    2888940
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Studentship
Unifying models of information processing across machine learning, artificial intelligence and neuroscience
统一机器学习、人工智能和神经科学的信息处理模型
  • 批准号:
    EP/X011151/1
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Fellowship
SBIR Phase I: Developing Artificial intelligence Models to Predict In-hospital Clinical Trajectories for Heart Failure Patients
SBIR 第一阶段:开发人工智能模型来预测心力衰竭患者的院内临床轨迹
  • 批准号:
    2304358
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了