An Artificial Intelligence Engineering System Analysis Assistant (Aiesaa) for auto-creation of integrated transmission-distribution grid models
用于自动创建综合输配电网模型的人工智能工程系统分析助手(Aiesaa)
基本信息
- 批准号:2329536
- 负责人:
- 金额:$ 39.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The integration of distributed energy resources (DERs), such as solar photovoltaic and battery systems, is revolutionizing power grids, offering new possibilities and challenges. To accurately model the impact of aggregated DER behaviors on power transmission while considering operational constraints, it is essential to develop comprehensive integrated transmission-distribution (T&D) network models. However, creating full-scale models for each distribution system is impractical due to the large number of systems connected to the regional transmission grid. In this project, our main objective is to develop Aiesaa, an Artificial-intelligence (AI) assistant, to transform the process of creating compact and integrated T&D network models. We aim to overcome the labor-intensive nature, scalability and model conversion issues, and communication challenges faced by current co-simulation approaches. Aiesaa will leverage advanced machine learning techniques to streamline three crucial modeling tasks. Firstly, it will assist in scenario classification, allowing human experts to focus on non-critical scenarios where simplified models can be used. Secondly, Aiesaa will employ meta-modeling techniques to select and parameterize reduced-order models for critical scenarios, striking a balance between accuracy and complexity. Lastly, Aiesaa will facilitate human-in-the-loop model integration, ensuring collaboration between AI and experts to achieve optimal model performance and complexity.By combining the speed and accuracy of AI with the insights and experiences of human experts, Aiesaa will introduce a novel framework for engineering model creation that surpasses existing methodologies. This approach automates routine tasks and workflows, freeing up experts to concentrate on higher-level activities that demand their expertise. Importantly, the human-in-the-loop approach ensures that AI serves as a collaborator rather than a replacement for human professionals. The development of Aiesaa has significant implications for computational efficiency and cost-effectiveness. By reducing model complexity and shortening development time, Aiesaa enables the use of compact integrated T&D models on standalone computing platforms. This reduces reliance on expensive infrastructure, enhances data security, and accelerates simulations. Additionally, Aiesaa reduces the learning curve for modelers, empowering them to focus on higher-level tasks such as engineering system design and future scenarios. Upon completion of the project, we plan to share a prototype of Aiesaa with the research and engineering community, fostering advancements in the field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分布式能源(DER)的整合,如太阳能光伏和电池系统,正在彻底改变电网,提供新的可能性和挑战。为了在考虑运行约束的同时准确地模拟聚合DER行为对电力传输的影响,有必要开发全面的综合输配电(TD)网络模型。然而,由于大量的系统连接到区域输电网,为每个配电系统创建全尺寸模型是不切实际的。在这个项目中,我们的主要目标是开发Aiesaa,一个专业智能(AI)助手,以改变创建紧凑和集成的TD网络模型的过程。我们的目标是克服劳动密集型的性质,可扩展性和模型转换的问题,以及当前的协同仿真方法所面临的通信挑战。Aiesaa将利用先进的机器学习技术来简化三个关键的建模任务。首先,它将有助于场景分类,允许人类专家专注于可以使用简化模型的非关键场景。其次,Aiesaa将采用元建模技术为关键场景选择和参数化降阶模型,在准确性和复杂性之间取得平衡。最后,Aiesaa将促进人在环模型集成,确保人工智能和专家之间的协作,以实现最佳的模型性能和复杂性。通过将人工智能的速度和准确性与人类专家的见解和经验相结合,Aiesaa将推出一种超越现有方法的工程模型创建新框架。这种方法可以自动执行常规任务和工作流程,使专家能够专注于需要他们专业知识的更高级别的活动。重要的是,人在回路方法确保人工智能作为合作者,而不是人类专业人员的替代品。Aiesaa的发展对计算效率和成本效益具有重要意义。通过降低模型复杂性和缩短开发时间,Aiesaa使紧凑的集成TD模型在独立的计算平台上使用成为可能。这减少了对昂贵基础设施的依赖,增强了数据安全性,并加快了模拟速度。此外,Aiesaa降低了建模人员的学习曲线,使他们能够专注于更高级别的任务,如工程系统设计和未来场景。项目完成后,我们计划与研究和工程界分享Aiesaa的原型,促进该领域的进步。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ning Lu其他文献
Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery
分散在分级多孔碳上的单铜位点用于改善锌空气电池的氧还原反应
- DOI:
10.1007/s12274-020-3141-x - 发表时间:
2020-10 - 期刊:
- 影响因子:9.9
- 作者:
Wenjie Wu;Yan Liu;Dong Liu;Wenxing Chen;Zhaoyi Song;Ximin Wang;Yamin Zheng;Ning Lu;Chunxia Wang;Junjie Mao;Yadong Li - 通讯作者:
Yadong Li
An IDL-Based Parallel Model for Scientific Computations on Multi-core Computers
基于IDL的多核计算机科学计算并行模型
- DOI:
10.1007/978-3-319-61845-6_46 - 发表时间:
2017-07 - 期刊:
- 影响因子:0
- 作者:
Weili Kou;Lili Wei;Changxian Liang;Ning Lu;Qiuhua Wang - 通讯作者:
Qiuhua Wang
Design of a Battery Energy Management System for Capacity Charge Reduction
用于减少容量充电的电池能量管理系统的设计
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:3.8
- 作者:
Di Wu;Xu Ma;Tao Fu;Z. Hou;P. Rehm;Ning Lu - 通讯作者:
Ning Lu
A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data
一种简单有效的算法,用于根据对地静止卫星数据估算每日全球太阳辐射
- DOI:
10.1016/j.energy.2011.03.007 - 发表时间:
2011-05 - 期刊:
- 影响因子:9
- 作者:
Ning Lu;Jun Qin;Kun Yang;Jiulin Sun - 通讯作者:
Jiulin Sun
Fundamental Questions and New Counterexamples for b-Metric Spaces and Fatou Property
b 度量空间和 Fatou 性质的基本问题和新反例
- DOI:
10.3390/math7111107 - 发表时间:
2019-11 - 期刊:
- 影响因子:2.4
- 作者:
Ning Lu;Fei He;Wei-Shih Du - 通讯作者:
Wei-Shih Du
Ning Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ning Lu', 18)}}的其他基金
Collaborative Research: A Fundamentals-based Paradigm for Expansive Soil Classification
合作研究:基于基础的膨胀土分类范式
- 批准号:
1902045 - 财政年份:2019
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Dimensional and Multi-Physics Analysis of Rainfall-Induced Landslides and Runout
合作研究:降雨引起的滑坡和径流的多维和多物理分析
- 批准号:
1561764 - 财政年份:2016
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
Workshop on Geotechnical Fundamentals in the Face of New Challenges, Arlington, VA, January, 2016
面临新挑战的岩土工程基础研讨会,弗吉尼亚州阿灵顿,2016 年 1 月
- 批准号:
1536733 - 财政年份:2015
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and Computational Investigation of Multiphase Consolidation for Partially Saturated Soils
合作研究:部分饱和土多相固结的实验和计算研究
- 批准号:
1363315 - 财政年份:2014
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
Collaborative Research: A New Framework for Fine-grained Soil Characterization (Moving Beyond Atterberg Limits)
合作研究:细粒土壤表征的新框架(超越阿特伯格极限)
- 批准号:
1233063 - 财政年份:2012
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
SEP Collaborative: Pathways to Scalable, Efficient and Sustainable Soil Borehole Thermal Energy Storage Systems
SEP 协作:可扩展、高效和可持续的土壤钻孔热能存储系统之路
- 批准号:
1230544 - 财政年份:2012
- 资助金额:
$ 39.7万 - 项目类别:
Continuing Grant
Collaborative Research: Coupled Flow Phenomena in Unsaturated Clay Barriers
合作研究:不饱和粘土屏障中的耦合流动现象
- 批准号:
0926276 - 财政年份:2009
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
Do Precipitation-Induced Shallow Landslides Occur under Unsaturated Conditions?
非饱和条件下是否会发生降水引发的浅层滑坡?
- 批准号:
0855783 - 财政年份:2009
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
Introducing Unsaturated Flow Phenomena into an Undergraduate Civil Engineering Curriculum
将不饱和流动现象引入本科土木工程课程
- 批准号:
0126306 - 财政年份:2002
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
Introducing Chemical Transport Phenomena in Soils into the Undergraduate Civil Engineering Curriculum
将土壤中的化学输运现象引入本科土木工程课程
- 批准号:
9980866 - 财政年份:2000
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
相似海外基金
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
SCIPE: Chishiki.ai: A sustainable, diverse, and integrated CIP community for Artificial Intelligence in Civil and Environmental Engineering
SCIPE:Chishiki.ai:土木与环境工程人工智能的可持续、多元化和综合 CIP 社区
- 批准号:
2321040 - 财政年份:2023
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
Equipment: MRI: Track 2 Acquisition of a High-Performance Computing Cluster for Boosting Artificial Intelligence Enabled Science, Engineering, and Education in South Carolina
设备: MRI:第二轨道收购高性能计算集群,以促进南卡罗来纳州人工智能支持的科学、工程和教育
- 批准号:
2320292 - 财政年份:2023
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
Incorporating Generative Artificial Intelligence into Engineering Writing Courses
将生成人工智能纳入工程写作课程
- 批准号:
2315294 - 财政年份:2023
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
EAGER: XAISE: Explainable Artificial Intelligence for Science and Engineering
EAGER:XAISE:科学与工程领域的可解释人工智能
- 批准号:
2331329 - 财政年份:2023
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
Scholarships, Mentoring, and Professional Support to Improve Engineering & Artificial Intelligence Student Success at Community Colleges
旨在改进工程的奖学金、指导和专业支持
- 批准号:
2220959 - 财政年份:2023
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
SBIR Phase I: Solving Minority Equity in Science, Technology, Engineering, and Mathematics (STEM) with Artificial Intelligence (AI)-Driven Workforce Development
SBIR 第一阶段:通过人工智能 (AI) 驱动的劳动力发展解决科学、技术、工程和数学 (STEM) 领域的少数股权问题
- 批准号:
2304546 - 财政年份:2023
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
EAGER: Impact of Generative Artificial Intelligence (GAI) on Engineering Education Practices
EAGER:生成人工智能 (GAI) 对工程教育实践的影响
- 批准号:
2319137 - 财政年份:2023
- 资助金额:
$ 39.7万 - 项目类别:
Standard Grant
An intellectual overlap of pure mathematics and engineering techniques targeted to develop self-reliant, efficient, and clean artificial intelligence processors
纯数学和工程技术的智力重叠,旨在开发自力更生、高效和清洁的人工智能处理器
- 批准号:
577214-2022 - 财政年份:2022
- 资助金额:
$ 39.7万 - 项目类别:
Alliance Grants
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 39.7万 - 项目类别:
Studentship