Computational approaches for analysis and design of complex multiphase flow systems

复杂多相流系统分析和设计的计算方法

基本信息

  • 批准号:
    RGPIN-2020-04512
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Interest for Simulation-Based Engineering Science (SBES) has grown exponentially from a curiosity to become one of the most promising areas of future research. With the rapidly increasing speed and performance of computers, SBES is becoming a key and central topic in both academic and industrial research. SBES offers excellent perspectives to propel Canadian university research to the forefront of international science while improving the profitability and competitiveness of Canadian manufacturing companies. In many instances, the complexity of natural and engineered systems arises from their multiscale and multiphase nature (e.g., mixing processes, microfluidic systems, emulsions, blood flows, oil and gas extraction, contaminants transport, to name a few). Our poor understanding of these complex flows hampers our ability to achieve the breakthrough to revolutionary design needed to improve the welfare of the Canadian populations. GOAL The long-term goal of this proposal is to encapsulate advanced knowledge and know-how in order to simplify access to and use of the Lattice Boltzmann Method (LBM) to improve the performance of multiphase flow systems relevant to industry. A FIRST axis of research on high-performance computing will develop a novel open-source framework for the simulation of multiphase flows. A unified programming approach and productivity tools will be leveraged to drive productivity and the adoption of our scientific research. This will provide a strong foundation on which to build SBES tools needed to tackle future industrial needs. A SECOND axis of research on numerical methods for multiphase flows will provide open-access information resources to make it easier for industry to consider and include multiphase flow simulations in their analysis and design practices. The development of new improved and efficient multiphase flow models will also place us in a favorable position to deal with new challenges. A THIRD axis on applications applies our research on two classes of multiphase flows problems that are of industrial relevance. The analysis and design of complex multiphase flow systems in porous media and static mixers will be explored to demonstrate the scope and breadth of our approach. The third axis addressing problems of industrial complexity will also significantly increase the impact of our research as these tools and approaches will be made publicly available. Together, this three-axis open-source open-access strategy aims to achieve a broad visibility and to develop a strong SBES scientific community around the proposed research program.
对基于仿真的工程科学(SBES)的兴趣已经从好奇心呈指数级增长,成为未来研究中最有前途的领域之一。随着计算机速度和性能的迅速提高,SBES正在成为学术界和工业界研究的关键和中心课题。SBES为推动加拿大大学研究走向国际科学前沿提供了极好的视角,同时提高了加拿大制造公司的盈利能力和竞争力。在许多情况下,自然和工程系统的复杂性源于其多尺度和多相性质(例如,混合过程、微流体系统、乳液、血液流动、石油和天然气提取、污染物输送,仅举几例)。我们对这些复杂流动的理解不足,阻碍了我们实现改善加拿大人民福利所需的革命性设计的突破的能力。 目标 该提案的长期目标是封装先进的知识和技术诀窍,以简化格子玻尔兹曼方法(LBM)的访问和使用,从而提高与工业相关的多相流系统的性能。 高性能计算研究的第一个轴心将开发一个新的开源框架,用于多相流的模拟。将利用统一的编程方法和生产力工具来提高生产力和采用我们的科学研究。这将为构建满足未来工业需求所需的SBES工具提供坚实的基础。 多相流数值方法的第二个研究方向将提供开放的信息资源,使工业界更容易在其分析和设计实践中考虑和包括多相流模拟。新的改进和有效的多相流模型的开发也将使我们处于有利地位,以应对新的挑战。 第三个应用轴将我们的研究应用于两类与工业相关的多相流问题。将探讨多孔介质和静态混合器中复杂多相流系统的分析和设计,以展示我们方法的范围和广度。解决工业复杂性问题的第三个轴心也将显著增加我们研究的影响,因为这些工具和方法将公开提供。 总之,这三轴开源开放获取战略旨在实现广泛的知名度,并围绕拟议的研究计划发展一个强大的SBES科学社区。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leclaire, Sébastien其他文献

Leclaire, Sébastien的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leclaire, Sébastien', 18)}}的其他基金

Computational approaches for analysis and design of complex multiphase flow systems
复杂多相流系统分析和设计的计算方法
  • 批准号:
    RGPIN-2020-04512
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Computational approaches for analysis and design of complex multiphase flow systems
复杂多相流系统分析和设计的计算方法
  • 批准号:
    RGPIN-2020-04512
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Computational approaches for analysis and design of complex multiphase flow systems
复杂多相流系统分析和设计的计算方法
  • 批准号:
    DGECR-2020-00489
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Launch Supplement
Modèle de Boltzmann sur réseau pour la simulation des fluides immiscibles contaminants en milieux poreux.
玻尔兹曼模型模拟孔隙环境中不混溶污染物的流体。
  • 批准号:
    408998-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Modèle de Boltzmann sur réseau pour la simulation des fluides immiscibles contaminants en milieux poreux.
玻尔兹曼模型模拟孔隙环境中不混溶污染物的流体。
  • 批准号:
    408998-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
  • 批准号:
    2311297
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
  • 批准号:
    10585301
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Computational approaches to the mechanistic elucidation of the serrated pathway of human colon carcinogenesis
人类结肠癌发生锯齿状途径机制阐明的计算方法
  • 批准号:
    10590985
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Eye tracking and computational approaches to understand the roles of maturation and experience in infant looking
眼动追踪和计算方法可用于了解成熟和经验在婴儿注视中的作用
  • 批准号:
    10602809
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Discovering human divergent activity-regulated elements using comparative, computational, and functional approaches
使用比较、计算和功能方法发现人类不同活动调节的元素
  • 批准号:
    10779701
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Computational Approaches for Studying Transcription Elongation Control in Cancer
研究癌症转录延伸控制的计算方法
  • 批准号:
    10516514
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
Computational Approaches for Studying Transcription Elongation Control in Cancer
研究癌症转录延伸控制的计算方法
  • 批准号:
    10697319
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
Novel computational approaches to characterize the effects of rare functional outlier variants on cis- and trans-regulatory disease processes
新的计算方法来表征罕见功能异常变异对顺式和反式调节疾病过程的影响
  • 批准号:
    10679055
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
Computational approaches for analysis and design of complex multiphase flow systems
复杂多相流系统分析和设计的计算方法
  • 批准号:
    RGPIN-2020-04512
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Computational approaches to unravel immune receptor sequencing for cancer immunotherapy
揭示癌症免疫治疗免疫受体测序的计算方法
  • 批准号:
    10490312
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了