Baseline designs, space-filling designs and big data research

基线设计、空间填充设计和大数据研究

基本信息

  • 批准号:
    RGPIN-2020-04548
  • 负责人:
  • 金额:
    $ 3.13万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

This proposal discusses three research directions in experimental design, a branch of statistics that deals with data collection. The first direction is on baseline designs. Factorial designs are commonly employed in science and technology to study how a response variable depends on a number of potential factors. Analysis is generally done using orthogonal effects, which is called the orthogonal parametrization. When factors have a default setting, a baseline parametrization of effects becomes more appropriate. Nonorthogonality of baseline effects raises serious challenges, and only very limited results are available to this date. The proposal will examine a new approach by establishing and utilizing a relationship between the two types of parametrization. Rich results are expected from this novel approach. The next direction is on space-filling designs. Nowadays, scientific and technological investigations are routinely conducted on computers. For complex computer models, it is prudent to build a surrogate model for fast updating and predictions. The statistical approach to this problem is via computer experiments, where researchers build surrogate models based on a set of inputs and corresponding outputs. Judicious selection of inputs is crucial. Space-filling designs are most suited for computer experiments. The most attractive approach is to use strong orthogonal arrays because of their guaranteed space-filling properties. Despite recent advances, some major problems remain open and they are topics for the proposed research. One example is to find strong orthogonal arrays that also perform well under other criteria such as those of orthogonality, distance or discrepancy. The third direction is about big data research. We consider a measurement constrained supervised learning problem. A big data set is available that contains observations on explanatory variables, but information on a response variable is very expensive to obtain. This situation necessitates the selection of a sample of the big data set; one can then collect information on the response variable for this small data set. Two popular methods are a sampling method using leverages and a deterministic method, called IBOSS, using design theory. While the IBOSS enjoys appealing properties compared to the sampling method, it heavily relies on a pre-specified linear model. The proposed research examines the use of space-filling designs for subdata selection. This approach is robust to model misspecification, and expected to perform well under various models. Training HQP is integral part of the proposed research. Each of the three research directions outlined above has enough topics to train at least one PhD student. The proposed research also contains a plentiful supply of research topics for training undergraduate and MSc students. Details on how to integrate HQP training into the proposed research will be provided in the HQP training plan.
实验设计是统计学中处理数据收集的一个分支,本文讨论了实验设计的三个研究方向。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tang, Boxin其他文献

Strong orthogonal arrays and associated Latin hypercubes for computer experiments
  • DOI:
    10.1093/biomet/ass065
  • 发表时间:
    2013-03-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    He, Yuanzhen;Tang, Boxin
  • 通讯作者:
    Tang, Boxin
Synergistic Increase in Ionic Conductivity and Modulus of Triblock Copolymer Ion Gels
  • DOI:
    10.1021/acs.macromol.5b00882
  • 发表时间:
    2015-07-28
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Tang, Boxin;White, Scott P.;Lodge, Timothy P.
  • 通讯作者:
    Lodge, Timothy P.
Nearly orthogonal arrays mappable into fully orthogonal arrays
近正交数组可映射为完全正交数组
  • DOI:
    10.1093/biomet/asu042
  • 发表时间:
    2014-12
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Mukerjee, Rahul;Sun, Fasheng;Tang, Boxin
  • 通讯作者:
    Tang, Boxin
Orthogonal and nearly orthogonal designs for computer experiments
  • DOI:
    10.1093/biomet/asn057
  • 发表时间:
    2009-03-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Bingham, Derek;Sitter, Randy R.;Tang, Boxin
  • 通讯作者:
    Tang, Boxin

Tang, Boxin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tang, Boxin', 18)}}的其他基金

Baseline designs, space-filling designs and big data research
基线设计、空间填充设计和大数据研究
  • 批准号:
    RGPIN-2020-04548
  • 财政年份:
    2022
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Baseline designs, space-filling designs and big data research
基线设计、空间填充设计和大数据研究
  • 批准号:
    RGPIN-2020-04548
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Design Methodology for Computer and Physical Experiments
计算机和物理实验的设计方法
  • 批准号:
    RGPIN-2015-03903
  • 财政年份:
    2019
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Design Methodology for Computer and Physical Experiments
计算机和物理实验的设计方法
  • 批准号:
    RGPIN-2015-03903
  • 财政年份:
    2018
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Design Methodology for Computer and Physical Experiments
计算机和物理实验的设计方法
  • 批准号:
    RGPIN-2015-03903
  • 财政年份:
    2017
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Design Methodology for Computer and Physical Experiments
计算机和物理实验的设计方法
  • 批准号:
    RGPIN-2015-03903
  • 财政年份:
    2016
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Design Methodology for Computer and Physical Experiments
计算机和物理实验的设计方法
  • 批准号:
    RGPIN-2015-03903
  • 财政年份:
    2015
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Space-filling designs and robust orthogonal arrays
空间填充设计和稳健的正交阵列
  • 批准号:
    288264-2009
  • 财政年份:
    2014
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Space-filling designs and robust orthogonal arrays
空间填充设计和稳健的正交阵列
  • 批准号:
    288264-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Space-filling designs and robust orthogonal arrays
空间填充设计和稳健的正交阵列
  • 批准号:
    288264-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

图的正则性和胞腔代数
  • 批准号:
    10871027
  • 批准年份:
    2008
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
  • 批准号:
    10668079
  • 财政年份:
    2023
  • 资助金额:
    $ 3.13万
  • 项目类别:
The role of the extracellular matrix in establishing Schwann cell polarity
细胞外基质在建立雪旺细胞极性中的作用
  • 批准号:
    10604797
  • 财政年份:
    2023
  • 资助金额:
    $ 3.13万
  • 项目类别:
Cancer-associated fibroblasts promote thyroid cancer malignancy through Wnt signaling
癌症相关成纤维细胞通过 Wnt 信号传导促进甲状腺癌恶性
  • 批准号:
    10677942
  • 财政年份:
    2023
  • 资助金额:
    $ 3.13万
  • 项目类别:
Redeveloping Low-Income Communities Of Color: Impacts On Residents' Obesity And Related Health Behaviors
重建低收入有色人种社区:对居民肥胖及相关健康行为的影响
  • 批准号:
    10680178
  • 财政年份:
    2023
  • 资助金额:
    $ 3.13万
  • 项目类别:
A kinetic framework to map the genetic determinants of alternative RNA isoform expression
绘制替代 RNA 亚型表达遗传决定因素的动力学框架
  • 批准号:
    10638072
  • 财政年份:
    2023
  • 资助金额:
    $ 3.13万
  • 项目类别:
Improved MRI guidance of pediatric catheterization via autonomous multi-beat data synthesis
通过自主多节拍数据合成改进儿科导管插入术的 MRI 指导
  • 批准号:
    10412491
  • 财政年份:
    2022
  • 资助金额:
    $ 3.13万
  • 项目类别:
From Nerve to Brain: Toward a Mechanistic Understanding of Spinal Cord Stimulation in Human Subjects
从神经到大脑:对人类受试者脊髓刺激的机制理解
  • 批准号:
    10518516
  • 财政年份:
    2022
  • 资助金额:
    $ 3.13万
  • 项目类别:
Improved MRI guidance of pediatric catheterization via autonomous multi-beat data synthesis
通过自主多节拍数据合成改进儿科导管插入术的 MRI 指导
  • 批准号:
    10646226
  • 财政年份:
    2022
  • 资助金额:
    $ 3.13万
  • 项目类别:
Baseline designs, space-filling designs and big data research
基线设计、空间填充设计和大数据研究
  • 批准号:
    RGPIN-2020-04548
  • 财政年份:
    2022
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Supratherapeutic PTX Buttresses Reduce Locoregional Recurrence Rates Following Surgery for Soft Tissue Sarcomas
超治疗 PTX 支撑可降低软组织肉瘤手术后的局部复发率
  • 批准号:
    10670441
  • 财政年份:
    2022
  • 资助金额:
    $ 3.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了