Theoretical studies of quantum magnets and strongly correlated metals
量子磁体和强相关金属的理论研究
基本信息
- 批准号:RGPIN-2020-05615
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this research program is to discover and study theoretical frameworks which capture the general underlying and unifying physical principles of quantum materials such as frustrated magnets and strongly correlated metals.
Geometrically frustrated magnets are characterized by the geometry of their magnetic ion sub-lattice: the magnetic moments ("spins") are located at the vertices of triangles or tetrahedra. Generally, a pair of spins has a particular relative orientation which minimizes their interaction energy. A system is frustrated when there is no arrangement of the spins that simultaneously minimizes the interaction energy between all pairs of spins. A famous example is the rare-earth pyrochlore crystals, where the magnetic rare earth ions are located on the vertices of a connected network of tetrahedra.
Many different phenomena have been observed in pyrochlore crystals, including ordinary ferromagnetism (a state where the spins are all aligned with each other), anti-ferromagnetism (in which the spins alternate their orientation), spin ice (systems with spins obeying the ice-rule: two spins pointing into and two spins pointing out of each tetrahedron), quantum spin-ice (spin-ice states with large quantum fluctuations) and spin-liquid (a state that has macroscropic quantum entanglement).
The proposed research will develop and use a suite of computational and analytical methods. The foundation for all approaches is the model, and in crystals with a high underlying symmetry, completely general models will be derived using the methods of group theory (symmetry); these same methods can greatly reduce the complexity of the models. Computational methods include exact diagonalization (which yields exact solutions for systems with a small number of spins) and classical spin simulations.
Strongly correlated metals are conductors in which there are strong interactions between electrons, yielding a rich phase diagram that includes metal-to-insulator transitions, superconductivity or magnetic order. The electronic correlations can be modeled by the Hubbard interaction: a strong, constant repulsion that inhibits more than one conduction electron from occupying each atomic site. Although conceptually simple, this model presents difficult computational challenges, even in two-dimenstions. Recent advances by our group at MUN, which combine analytic and computational methods in a procedure called "Algorithmic Matsubara Integration" have considerably decreased computing times to the point where exact results up to sixth order in perturbation theory are within reach. This proposal aims to fulfill this task. Beyond two-dimensions, the Hubbard model has been applied to many systems, especially those with transition elements or rare earths. Among these are the metallic rare-earth pyrochlores such as Pr2Ir2O7; the longer term goal of this work is to apply our numerical techniques to this system.
该研究计划的目标是发现和研究理论框架,这些理论框架捕获量子材料的一般基础和统一物理原理,如受抑磁体和强相关金属。
几何受抑磁体的特征在于其磁性离子子晶格的几何形状:磁矩(“自旋”)位于三角形或四面体的顶点处。通常,一对自旋具有使它们的相互作用能最小化的特定相对取向。当没有自旋的排列同时使所有自旋对之间的相互作用能量最小化时,系统会受到挫折。一个著名的例子是稀土烧绿石晶体,其中磁性稀土离子位于连接的四面体网络的顶点上。
在烧绿石晶体中观察到许多不同的现象,包括普通的铁磁性(自旋相互对齐的状态),反铁磁性(其中自旋交替其方向),自旋冰(自旋服从冰规则的系统:两个自旋指向每个四面体内和两个自旋指向每个四面体外),量子自旋冰(具有大量子涨落的自旋冰状态)和自旋液体(具有宏观量子纠缠的状态)。
拟议的研究将开发和使用一套计算和分析方法。所有方法的基础是模型,在具有高度潜在对称性的晶体中,完全通用的模型将使用群论(对称性)的方法导出;这些相同的方法可以大大降低模型的复杂性。计算方法包括精确对角化(产生具有少量自旋的系统的精确解)和经典自旋模拟。
强关联金属是电子之间存在强相互作用的导体,产生丰富的相图,包括金属到绝缘体的转变,超导性或磁序。电子相关性可以用哈伯德相互作用来模拟:一种强烈的、恒定的排斥作用,阻止一个以上的传导电子占据每个原子位置。虽然概念上很简单,这个模型提出了困难的计算挑战,即使在二维。我们在MUN的小组最近取得的进展,在一个称为“数学松原积分”的程序中结合了联合收割机分析和计算方法,大大减少了计算时间,使微扰理论中六阶的精确结果触手可及。本提案旨在完成这一任务。除了二维,哈伯德模型已经被应用于许多系统,特别是那些过渡元素或稀土。其中包括金属稀土高温超导体,如Pr 2 Ir 2 O 7;这项工作的长期目标是将我们的数值技术应用于该系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Curnoe, Stephanie其他文献
Curnoe, Stephanie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Curnoe, Stephanie', 18)}}的其他基金
Theoretical studies of quantum magnets and strongly correlated metals
量子磁体和强相关金属的理论研究
- 批准号:
RGPIN-2020-05615 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Theoretical studies of quantum magnets and strongly correlated metals
量子磁体和强相关金属的理论研究
- 批准号:
RGPIN-2020-05615 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Frustrated Magnets and Unconventional Superconductors: Symmetry and Quantum Mechanics
受阻磁体和非常规超导体:对称性和量子力学
- 批准号:
RGPIN-2014-05717 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Frustrated Magnets and Unconventional Superconductors: Symmetry and Quantum Mechanics
受阻磁体和非常规超导体:对称性和量子力学
- 批准号:
RGPIN-2014-05717 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Frustrated Magnets and Unconventional Superconductors: Symmetry and Quantum Mechanics
受阻磁体和非常规超导体:对称性和量子力学
- 批准号:
RGPIN-2014-05717 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Frustrated Magnets and Unconventional Superconductors: Symmetry and Quantum Mechanics
受阻磁体和非常规超导体:对称性和量子力学
- 批准号:
RGPIN-2014-05717 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Frustrated Magnets and Unconventional Superconductors: Symmetry and Quantum Mechanics
受阻磁体和非常规超导体:对称性和量子力学
- 批准号:
RGPIN-2014-05717 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Symmetry, magnetism and superconductivity in new materials
新材料中的对称性、磁性和超导性
- 批准号:
239827-2009 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Symmetry, magnetism and superconductivity in new materials
新材料中的对称性、磁性和超导性
- 批准号:
239827-2009 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Symmetry, magnetism and superconductivity in new materials
新材料中的对称性、磁性和超导性
- 批准号:
239827-2009 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
脂滴聚集型小胶质细胞介导的髓鞘病变促进小鼠抑郁样行为及其机制研究
- 批准号:82371528
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
星形胶质细胞介导的髓鞘吞噬参与慢性脑低灌注白质损伤的机制研究
- 批准号:82371307
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Theoretical studies on analog quantum gravity using superconducting Josephson circuits
使用超导约瑟夫森电路模拟量子引力的理论研究
- 批准号:
22K03452 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical studies of quantum magnets and strongly correlated metals
量子磁体和强相关金属的理论研究
- 批准号:
RGPIN-2020-05615 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Theoretical studies on quantum transport and manipulation of nanoscale systems
纳米系统量子输运和操控的理论研究
- 批准号:
21F21022 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Theoretical AMO Studies of Non-Equilibrium and Emergent Many-Body Quantum Physics
非平衡和新兴多体量子物理的理论 AMO 研究
- 批准号:
2110250 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Theoretical studies of quantum magnets and strongly correlated metals
量子磁体和强相关金属的理论研究
- 批准号:
RGPIN-2020-05615 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Theoretical studies on photo-excitation processes of molecular ions generated in intense laser fields
强激光场中分子离子光激发过程的理论研究
- 批准号:
20J23551 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Computational and Theoretical Studies of Retroviral Replication - Resubmission
逆转录病毒复制的计算和理论研究 - 重新提交
- 批准号:
9910613 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Theoretical Studies of Quantum Systems with Strong Interaction: Geometry and Topology of Quantum States and Flows
强相互作用量子系统的理论研究:量子态和流动的几何和拓扑
- 批准号:
1949963 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Theoretical studies of nonlinear optical properties of fluorescent proteins by novel low-cost quantum chemistry methods
通过新型低成本量子化学方法对荧光蛋白非线性光学性质的理论研究
- 批准号:
450959503 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Research Grants
Computational and Theoretical Studies of Retroviral Replication - Resubmission
逆转录病毒复制的计算和理论研究 - 重新提交
- 批准号:
10341163 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别: