Understanding how cell stress pathways contribute to defense responses in healthy cells
了解细胞应激途径如何促进健康细胞的防御反应
基本信息
- 批准号:RGPIN-2020-04896
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal examines how components of the Unfolded Protein Response (UPR) contribute to the molecular signaling pathways initiated to facilitate defense responses in healthy cells.
The unfolded protein response (UPR) is a highly conserved stress response pathway activated in cells by accumulation of unfolded or misfolded proteins, a condition referred to as Endoplasmic Reticulum (ER) stress. The UPR is the collective term given to a series of orchestrated signaling pathways controlled by three ER anchored transmembrane receptors (IRE1, PERK and ATF6). Classically, these signaling mechanisms function to reduce levels of unfolded proteins and restore ER homeostasis. If that is not possible, signaling switches from pro-survival to pro-death and ER stress-induced cell death ensues. We are now beginning to realize components of the UPR pathway also influence signaling pathways essential to maintain cell viability including cellular defense processes.
Like the UPR, inflammation can also be viewed as a mechanism aimed at restoring cellular homeostasis. However, in the case of inflammation the originating triggers (external or internal) indirectly cause a loss of cellular homeostasis, which is detected by internal mechanisms and leads to the activation of stress responses. For example, my recent work has defined a role for IRE1 in promoting structural assembly of the NLRP3 inflammasome a key cellular defense component.
This research program investigates how cellular stress and defense signaling pathways integrate and work in a co-operative manner to insure the maintenance of cell viability. To this end, cellular reporter systems will be developed for IRE1, PERK and ATF6 allowing us to monitor their activation in healthy cells following initiation of cellular defense mechanisms. Using cell biology techniques, we will selectively block each arm of the UPR and assess the outcome of this on the ability of healthy cells to respond to internal or external threats. In addition to these broader questions addressing the interplay between stress and defense pathways, we will determine which signaling pathways contribute to IRE1-mediated regulation of the inflammasome and assess the importance of this in cell defense responses.
This research program addresses the interplay between two fundamental cellular signaling pathways previously thought to act in independent and distinct manners. As such it represents a new emerging area of research at the intersection of cell biology and immunology. Knowledge generated from this program will greatly enhance our understanding of how healthy cells respond to challenges in their environment.
该提案研究了未折叠蛋白质反应(UPR)的组成部分如何有助于启动分子信号通路,以促进健康细胞的防御反应。
未折叠蛋白反应(UPR)是一种高度保守的应激反应途径,通过积累未折叠或错误折叠的蛋白质在细胞中激活,这种情况称为内质网(ER)应激。UPR是由三种ER锚定跨膜受体(IRE1,PERK和ATF6)控制的一系列协调信号通路的总称。传统上,这些信号传导机制的功能是降低未折叠蛋白的水平并恢复ER稳态。如果这是不可能的,信号从促生存切换到促死亡和ER应激诱导的细胞死亡增强。我们现在开始意识到UPR通路的组成部分也影响维持细胞活力所必需的信号通路,包括细胞防御过程。
与UPR一样,炎症也可以被视为旨在恢复细胞稳态的机制。然而,在炎症的情况下,原始触发(外部或内部)间接导致细胞稳态的丧失,这是由内部机制检测到的,并导致应激反应的激活。 例如,我最近的工作已经确定了IRE1在促进NLRP 3炎性体(一种关键的细胞防御成分)的结构组装中的作用。
该研究项目研究细胞应激和防御信号通路如何整合并以合作方式工作,以确保维持细胞活力。 为此,将开发IRE1、PERK和ATF6的细胞报告系统,使我们能够在启动细胞防御机制后监测它们在健康细胞中的激活。利用细胞生物学技术,我们将选择性地阻断普遍定期审议的每一个分支,并评估其对健康细胞应对内部或外部威胁的能力的影响。 除了这些更广泛的问题解决压力和防御途径之间的相互作用,我们将确定哪些信号通路有助于IRE1介导的炎症体调节,并评估这在细胞防御反应的重要性。
该研究计划解决了两个基本的细胞信号通路之间的相互作用,以前认为这两个信号通路以独立和不同的方式起作用。因此,它代表了细胞生物学和免疫学交叉的一个新兴研究领域。从这个项目中产生的知识将大大提高我们对健康细胞如何应对环境挑战的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Logue, Susan其他文献
Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies.
- DOI:
10.3390/cancers15215269 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:5.2
- 作者:
Zarrabi, Ali;Perrin, David;Kavoosi, Mahboubeh;Sommer, Micah;Sezen, Serap;Mehrbod, Parvaneh;Bhushan, Bhavya;Machaj, Filip;Rosik, Jakub;Kawalec, Philip;Afifi, Saba;Bolandi, Seyed Mohammadreza;Koleini, Peiman;Taheri, Mohsen;Madrakian, Tayyebeh;Los, Marek J.;Lindsey, Benjamin;Cakir, Nilufer;Zarepour, Atefeh;Hushmandi, Kiavash;Fallah, Ali;Koc, Bahattin;Khosravi, Arezoo;Ahmadi, Mazaher;Logue, Susan;Orive, Gorka;Pecic, Stevan;Gordon, Joseph W.;Ghavami, Saeid - 通讯作者:
Ghavami, Saeid
Logue, Susan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Logue, Susan', 18)}}的其他基金
Cell Stress and Inflammation
细胞压力和炎症
- 批准号:
CRC-2018-00305 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Canada Research Chairs
Understanding how cell stress pathways contribute to defense responses in healthy cells
了解细胞应激途径如何促进健康细胞的防御反应
- 批准号:
RGPIN-2020-04896 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Understanding how cell stress pathways contribute to defense responses in healthy cells
了解细胞应激途径如何促进健康细胞的防御反应
- 批准号:
RGPIN-2020-04896 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Cell Stress And Inflammation
细胞压力和炎症
- 批准号:
CRC-2018-00305 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Canada Research Chairs
Understanding how cell stress pathways contribute to defense responses in healthy cells
了解细胞应激途径如何促进健康细胞的防御反应
- 批准号:
DGECR-2020-00023 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Launch Supplement
Cell Stress and Inflammation
细胞压力和炎症
- 批准号:
1000232202-2018 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Canada Research Chairs
Cell Stress and Inflammation
细胞压力和炎症
- 批准号:
1000232202-2018 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Canada Research Chairs
相似海外基金
Organelle teamwork: understanding how peroxisomes and mitochondria communicate in neuronal cell function
细胞器团队合作:了解过氧化物酶体和线粒体在神经细胞功能中如何沟通
- 批准号:
BB/Z514767/1 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Fellowship
Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
- 批准号:
10750765 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Towards the understanding of how chaperones function and prevent amyloidogenic diseases
了解伴侣如何发挥作用并预防淀粉样蛋白形成疾病
- 批准号:
10734397 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Understanding how social interactions influence reward-seeking behaviors: Developmental mechanisms
了解社交互动如何影响寻求奖励的行为:发展机制
- 批准号:
10716898 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Understanding how tissue stiffening affects cancer cell response to therapy
了解组织硬化如何影响癌细胞对治疗的反应
- 批准号:
2901690 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Studentship
How do cortical microtubules localize on cell cortex? - toward understanding its regulation and evolutionary implications.
皮质微管如何定位在细胞皮质上?
- 批准号:
23K05805 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Barrier functions of the sugary cell coat: Understanding how extracellular signalling proteins and bacterial toxins navigate the cell surface
糖细胞外壳的屏障功能:了解细胞外信号蛋白和细菌毒素如何在细胞表面导航
- 批准号:
2885385 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Studentship
Interdisciplinary approaches for understanding how arsenic and micronutrients affect the epigenome to influence spina bifida risk
了解砷和微量营养素如何影响表观基因组以影响脊柱裂风险的跨学科方法
- 批准号:
10560333 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Understanding how the interaction between Lag3 deficiency and hypercholesterolemia impact anti-tumor immunity and cardiovascular disease in a melanoma model
了解 Lag3 缺乏与高胆固醇血症之间的相互作用如何影响黑色素瘤模型中的抗肿瘤免疫和心血管疾病
- 批准号:
10637369 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别: