Using machine learning-based automation process to improve the productivity of CCTV inspections of municipal drainage systems
使用基于机器学习的自动化流程提高市政排水系统闭路电视检查的效率
基本信息
- 批准号:RGPIN-2020-05384
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Municipal drainage systems are probably one the most fundamental infrastructures which contributed to making modern cities marvels of civilisation that improved hygiene and by the same token general public health and quality of life. In fact, research in public health has clearly correlated sanitation and personal hygiene to longevity and decreased mortality (especially in infants). However, according to worldwide statistics, the current condition of public infrastructure (including roads, bridges, drainage systems, etc.) is already in a dire state and the financial requirements to bring it back to an acceptable level of service through better maintenance, repair, rehabilitation and replacement are now ranging in trillions of dollars. This situation can worsen even further for cities that are still expanding horizontally since in this case new infrastructure will be added to the existing inventory and thus will need to be included when forecasting future budgets for maintenance, repair, etc. In the case of drainage systems, structural and operational damage can be caused by a variety of factors, including natural ageing of pipes resulting from chemical reaction with sewage gases, soil movements and residential and commercial activities which can lead to material deposits. As a result, municipalities have devised a series of activities falling into two categories: cleaning and inspection, aiming at keeping this infrastructure operational at all time. Although time consuming and costly with respect to other inspection methods, CCTV is the most important method used to assess the condition of sewer pipes. From a data analysis perspective, CCTV inspection, which constitutes the focus of this research, can generically be viewed as a two-step process: (i) data (i.e. video) collection, and (ii) data analysis (i.e. video assessment) in the course of which defects are detected and classified. The proposed research aims at extracting additional value from CCTV inspection videos by building an automatic framework from which a condition-based deterioration model will be developed and applied to quantify the consequences of false negatives and misclassifications. Since the methodology underlying this research is anchored in the area of computer vision and image processing, the knowledge gained from building the analysis framework associated with CCTV inspections of sewer pipes can be adapted to other maintenance situations using a similar inspection technology.
市政排水系统可能是最基本的基础设施之一,这些基础设施有助于使现代城市奇迹,从而改善了卫生的卫生和同样的公共保健和生活质量。实际上,公共卫生的研究显然已将卫生和个人卫生与寿命和死亡率降低相关(尤其是在婴儿中)。但是,根据全球统计数据,目前的公共基础设施(包括道路,桥梁,排水系统等)已经处于可怕的状态,并且通过更好的维护,修复,康复和替换,将其恢复到可接受的服务水平的财务需求现在数万亿美元。对于仍在水平扩展的城市而言,这种情况可能会进一步恶化,因为在这种情况下,新的基础设施将添加到现有的库存中,因此,当预测未来的维护预算进行维护,维修等预测预算时。在排水系统的情况下,结构和操作损害,结构性和操作性损害可能由多种因素引起的因素而引起的,从而导致材料的自然衰减产生材料的自然变化,而造成了缝隙和变化的缝隙,并导致了缝隙和缝隙的造成污垢,并造成了缝隙,并造成了缝隙,并造成了缝隙,并造成了缝隙,并造成了缝隙和缝隙的变化。结果,市政当局设计了一系列活动分为两类:清洁和检查,旨在保持这种基础设施一直在运行。尽管在其他检查方法方面耗时且昂贵,但CCTV是用于评估下水道状况的最重要方法。从数据分析的角度来看,构成这项研究重点的CCTV检查通常可以将其视为两步过程:(i)数据(即视频)集合,以及(ii)数据分析(即视频评估)在其中检测到缺陷的过程中。拟议的研究旨在通过建立一个自动框架来从CCTV检查视频中提取额外的价值,从中开发基于条件的劣化模型并应用以量化虚假负面因素和错误分类的后果。由于该研究的基础方法锚定在计算机视觉和图像处理领域,因此从建立与下水道管道检查相关的分析框架中获得的知识可以使用类似的检查技术来适应其他维护情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bouferguene, Ahmed其他文献
Data Mining Algorithms for Water Main Condition Prediction-Comparative Analysis
- DOI:
10.1061/(asce)wr.1943-5452.0001512 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:3.1
- 作者:
Assad, Ahmed;Bouferguene, Ahmed - 通讯作者:
Bouferguene, Ahmed
Assessing accessibility-based service effectiveness (ABSEV) and social equity for urban bus transit: A sustainability perspective
- DOI:
10.1016/j.scs.2018.10.003 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:11.7
- 作者:
Chen, Yuan;Bouferguene, Ahmed;Al-Hussein, Mohamed - 通讯作者:
Al-Hussein, Mohamed
Difference analysis of regional population ageing from temporal and spatial perspectives: a case study in China
- DOI:
10.1080/00343404.2018.1492110 - 发表时间:
2019-06-03 - 期刊:
- 影响因子:4.6
- 作者:
Chen, Yuan;Bouferguene, Ahmed;Al-Hussein, Mohamed - 通讯作者:
Al-Hussein, Mohamed
Spatial Analysis Framework for Age-Restricted Communities Integrating Spatial Distribution and Accessibility Evaluation
- DOI:
10.1061/(asce)up.1943-5444.0000537 - 发表时间:
2020-03-01 - 期刊:
- 影响因子:2.5
- 作者:
Chen, Yuan;Bouferguene, Ahmed;Al-Hussein, Mohamed - 通讯作者:
Al-Hussein, Mohamed
Analytic Hierarchy Process-Simulation Framework for Lighting Maintenance Decision-Making Based on the Clustered Network
- DOI:
10.1061/(asce)cf.1943-5509.0001101 - 发表时间:
2018-02-01 - 期刊:
- 影响因子:2.5
- 作者:
Chen, Yuan;Bouferguene, Ahmed;Al-Hussein, Mohamed - 通讯作者:
Al-Hussein, Mohamed
Bouferguene, Ahmed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bouferguene, Ahmed', 18)}}的其他基金
Using machine learning-based automation process to improve the productivity of CCTV inspections of municipal drainage systems
使用基于机器学习的自动化流程提高市政排水系统闭路电视检查的效率
- 批准号:
RGPIN-2020-05384 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Using machine learning-based automation process to improve the productivity of CCTV inspections of municipal drainage systems
使用基于机器学习的自动化流程提高市政排水系统闭路电视检查的效率
- 批准号:
RGPIN-2020-05384 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Crane operation assisted planning and optimization
起重机操作辅助规划和优化
- 批准号:
561098-2020 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Alliance Grants
Design, selection, and management of modular crane rigging for heavy industrial projects
重工业项目模块化起重机索具的设计、选择和管理
- 批准号:
518160-2017 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Collaborative Research and Development Grants
Combining field data and computer modelling to improve the productivity of CCTV data collection and analysis
结合现场数据和计算机建模,提高闭路电视数据收集和分析的生产力
- 批准号:
503647-2016 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Collaborative Research and Development Grants
Design, selection, and management of modular crane rigging for heavy industrial projects
重工业项目模块化起重机索具的设计、选择和管理
- 批准号:
518160-2017 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Collaborative Research and Development Grants
Designing an effective facility layout to improve the flow of a modular construction assembly line
设计有效的设施布局以改善模块化施工装配线的流程
- 批准号:
543759-2019 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Engage Grants Program
Design, selection, and management of modular crane rigging for heavy industrial projects
重工业项目模块化起重机索具的设计、选择和管理
- 批准号:
518160-2017 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Collaborative Research and Development Grants
Equipment selection and on-site utilization for heavy industrial projects
重工业项目设备选型及现场使用
- 批准号:
RGPIN-2014-05651 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Combining field data and computer modelling to improve the productivity of CCTV data collection and analysis
结合现场数据和计算机建模,提高闭路电视数据收集和分析的生产力
- 批准号:
503647-2016 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
高能重离子碰撞中使用机器学习研究强子标记的喷注层析
- 批准号:12305140
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
使用机器学习自动设计测量设备无关量子密钥分配协议
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
使用机器学习自动设计测量设备无关量子密钥分配协议
- 批准号:12204391
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
使用核碰撞仿真与机器学习研究原子核内中子密度分布与核子核子关联
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
基于机器学习的管型航路柔性化方法研究
- 批准号:U1933119
- 批准年份:2019
- 资助金额:30.0 万元
- 项目类别:联合基金项目
相似海外基金
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
- 批准号:
2425300 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Accelerating pulse breeding using machine learning
利用机器学习加速豆类育种
- 批准号:
LP230100351 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Linkage Projects
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
- 批准号:
10100493 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Collaborative R&D
Postdoctoral Fellowship: OCE-PRF: Using machine learning to investigate temporal dynamics of methane seep fauna at the Ocean Observatories Initiative (OOI) Regional Cabled Array
博士后奖学金:OCE-PRF:利用机器学习研究海洋观测计划 (OOI) 区域有线阵列中甲烷渗漏动物群的时间动态
- 批准号:
2307504 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
- 批准号:
MR/X033880/1 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Fellowship