Using machine learning-based automation process to improve the productivity of CCTV inspections of municipal drainage systems

使用基于机器学习的自动化流程提高市政排水系统闭路电视检查的效率

基本信息

  • 批准号:
    RGPIN-2020-05384
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Municipal drainage systems are probably one the most fundamental infrastructures which contributed to making modern cities marvels of civilisation that improved hygiene and by the same token general public health and quality of life. In fact, research in public health has clearly correlated sanitation and personal hygiene to longevity and decreased mortality (especially in infants). However, according to worldwide statistics, the current condition of public infrastructure (including roads, bridges, drainage systems, etc.) is already in a dire state and the financial requirements to bring it back to an acceptable level of service through better maintenance, repair, rehabilitation and replacement are now ranging in trillions of dollars. This situation can worsen even further for cities that are still expanding horizontally since in this case new infrastructure will be added to the existing inventory and thus will need to be included when forecasting future budgets for maintenance, repair, etc. In the case of drainage systems, structural and operational damage can be caused by a variety of factors, including natural ageing of pipes resulting from chemical reaction with sewage gases, soil movements and residential and commercial activities which can lead to material deposits. As a result, municipalities have devised a series of activities falling into two categories: cleaning and inspection, aiming at keeping this infrastructure operational at all time. Although time consuming and costly with respect to other inspection methods, CCTV is the most important method used to assess the condition of sewer pipes. From a data analysis perspective, CCTV inspection, which constitutes the focus of this research, can generically be viewed as a two-step process: (i) data (i.e. video) collection, and (ii) data analysis (i.e. video assessment) in the course of which defects are detected and classified. The proposed research aims at extracting additional value from CCTV inspection videos by building an automatic framework from which a condition-based deterioration model will be developed and applied to quantify the consequences of false negatives and misclassifications. Since the methodology underlying this research is anchored in the area of computer vision and image processing, the knowledge gained from building the analysis framework associated with CCTV inspections of sewer pipes can be adapted to other maintenance situations using a similar inspection technology.
城市排水系统可能是最基本的基础设施之一,它为现代城市的文明奇迹做出了贡献,改善了卫生状况,同样也改善了公众健康和生活质量。事实上,公共卫生方面的研究已经明确地将环境卫生和个人卫生与长寿和降低死亡率(尤其是婴儿)联系起来。然而,根据世界范围的统计数据,公共基础设施(包括道路、桥梁、排水系统等)的现状已经处于可怕的状态,通过更好的维护、修理、修复和更换,使其恢复到可接受的服务水平的财政需求现在达到数万亿美元。对于那些仍在横向扩张的城市来说,这种情况可能会进一步恶化,因为在这种情况下,新的基础设施将被添加到现有的库存中,因此在预测未来的维护、维修等预算时需要包括在内。就排水系统而言,结构和操作上的损坏可由多种因素造成,包括污水气体的化学反应导致管道自然老化、土壤移动以及可能导致物质沉积的住宅和商业活动。因此,市政当局设计了一系列活动,分为两类:清洁和检查,目的是保持这一基础设施随时运转。相对于其他检测方法,CCTV是最重要的评估下水道管道状况的方法。从数据分析的角度来看,作为本研究重点的CCTV检测大致可以分为两步:一是数据(即视频)采集,二是数据分析(即视频评估),在此过程中发现缺陷并进行分类。拟议的研究旨在通过建立一个自动框架,从CCTV检查视频中提取额外价值,该框架将开发一个基于状态的恶化模型,并将其应用于量化假阴性和错误分类的后果。由于本研究的基本方法是基于计算机视觉和图像处理领域,因此从构建与下水道闭路电视检查相关的分析框架中获得的知识可以适用于使用类似检查技术的其他维护情况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bouferguene, Ahmed其他文献

Spatial gaps in urban public transport supply and demand from the perspective of sustainability
  • DOI:
    10.1016/j.jclepro.2018.06.021
  • 发表时间:
    2018-09-10
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Chen, Yuan;Bouferguene, Ahmed;Al-Hussein, Mohamed
  • 通讯作者:
    Al-Hussein, Mohamed
Data Mining Algorithms for Water Main Condition Prediction-Comparative Analysis
Assessing accessibility-based service effectiveness (ABSEV) and social equity for urban bus transit: A sustainability perspective
  • DOI:
    10.1016/j.scs.2018.10.003
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    11.7
  • 作者:
    Chen, Yuan;Bouferguene, Ahmed;Al-Hussein, Mohamed
  • 通讯作者:
    Al-Hussein, Mohamed
Difference analysis of regional population ageing from temporal and spatial perspectives: a case study in China
  • DOI:
    10.1080/00343404.2018.1492110
  • 发表时间:
    2019-06-03
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Chen, Yuan;Bouferguene, Ahmed;Al-Hussein, Mohamed
  • 通讯作者:
    Al-Hussein, Mohamed
Analytic Hierarchy Process-Simulation Framework for Lighting Maintenance Decision-Making Based on the Clustered Network

Bouferguene, Ahmed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bouferguene, Ahmed', 18)}}的其他基金

Using machine learning-based automation process to improve the productivity of CCTV inspections of municipal drainage systems
使用基于机器学习的自动化流程提高市政排水系统闭路电视检查的效率
  • 批准号:
    RGPIN-2020-05384
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Crane operation assisted planning and optimization
起重机操作辅助规划和优化
  • 批准号:
    561098-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Alliance Grants
Design, selection, and management of modular crane rigging for heavy industrial projects
重工业项目模块化起重机索具的设计、选择和管理
  • 批准号:
    518160-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Collaborative Research and Development Grants
Using machine learning-based automation process to improve the productivity of CCTV inspections of municipal drainage systems
使用基于机器学习的自动化流程提高市政排水系统闭路电视检查的效率
  • 批准号:
    RGPIN-2020-05384
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Combining field data and computer modelling to improve the productivity of CCTV data collection and analysis
结合现场数据和计算机建模,提高闭路电视数据收集和分析的生产力
  • 批准号:
    503647-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Collaborative Research and Development Grants
Design, selection, and management of modular crane rigging for heavy industrial projects
重工业项目模块化起重机索具的设计、选择和管理
  • 批准号:
    518160-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Collaborative Research and Development Grants
Designing an effective facility layout to improve the flow of a modular construction assembly line
设计有效的设施布局以改善模块化施工装配线的流程
  • 批准号:
    543759-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Engage Grants Program
Design, selection, and management of modular crane rigging for heavy industrial projects
重工业项目模块化起重机索具的设计、选择和管理
  • 批准号:
    518160-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Collaborative Research and Development Grants
Equipment selection and on-site utilization for heavy industrial projects
重工业项目设备选型及现场使用
  • 批准号:
    RGPIN-2014-05651
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Combining field data and computer modelling to improve the productivity of CCTV data collection and analysis
结合现场数据和计算机建模,提高闭路电视数据收集和分析的生产力
  • 批准号:
    503647-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
非标准随机调度模型的最优动态策略
  • 批准号:
    71071056
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OCE-PRF: Using machine learning to investigate temporal dynamics of methane seep fauna at the Ocean Observatories Initiative (OOI) Regional Cabled Array
博士后奖学金:OCE-PRF:利用机器学习研究海洋观测计划 (OOI) 区域有线阵列中甲烷渗漏动物群的时间动态
  • 批准号:
    2307504
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
  • 批准号:
    10100493
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Collaborative R&D
Accelerating pulse breeding using machine learning
利用机器学习加速豆类育种
  • 批准号:
    LP230100351
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Linkage Projects
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
  • 批准号:
    MR/X033880/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Fellowship
Enhancing Condition Monitoring and Prognostics of Variable Speed Motor Drives Using Machine Learning and IoT Technologies
使用机器学习和物联网技术增强变速电机驱动器的状态监测和预测
  • 批准号:
    2910604
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Studentship
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
  • 批准号:
    24K17615
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
  • 批准号:
    10979324
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
  • 批准号:
    EP/X027732/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Research Grant
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
  • 批准号:
    2401047
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了