A Framework to Model Mixed Conventional and Automated Vehicular Traffic: Ameliorating Operations, Safety and Environmental Impacts

混合传统和自动车辆交通建模框架:改善运营、安全和环境影响

基本信息

  • 批准号:
    RGPIN-2020-06760
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

This research program proposes modeling tools that integrate connected and autonomous vehicles (i.e., automated vehicles) into conventional traffic streams. The proposed models control the interactions between conventional and automated vehicles on uninterrupted flow facilities. The goal is for such models to be used by transportation analysts to assess the sustainability of the next generation transportation systems. The research program is divided into three stages. The first stage will extend previously developed mixed traffic flow models into a unified methodology to capture vehicle interactions in mixed traffic. This methodology will be suitable to assess traffic conditions (i.e., delay, safety, emissions) on highways with various proportions of automated and conventional vehicles. Specific control algorithms will be developed to model mixed traffic considering different driving maneuvers (e.g., free-flow and passing maneuvers lane selection, access and egress to/from highway ramps, etc.). The developed methodology has to be integrated into the evaluation methods of traffic operations. Thus, the existing highway capacity methodology has to be adjusted to account for the effects of automated vehicles into mixed traffic flows. Next generation transportation systems are expected to contribute to the sustainability of transportation development, hence the need to define accurate modeling tools that can assist decision makers in promoting appropriate transportation management policies. The second stage of the research program will develop a methodology to evaluate the three-fold benefits of automated vehicles (i.e., potential to reduce delay due to traffic congestion, to improve safety at locations with increased vehicular conflicts, and to ameliorate the environmental impact by reducing vehicle's GHG emissions). This will be done by calibrating the parameters of the control algorithms of automated vehicles, while considering various ratios between automated and conventional vehicles in mixed traffic flows. Traffic data available from other projects will be complemented by data collection through the available smart traffic controllers. In the third stage, the research team will validate the developed models by assessing the effects of mixed traffic flows on the specific case of reserved-lanes facilities (e.g., bus lanes, HOV lanes, etc.). Different ratios of automated vehicles will be considered for the analysis of traffic operations, safety and environment. Hence, a trade-off will be identified between gradual development of the next generation transportation infrastructures versus waiting a longer period until a critical mass of automated vehicles are penetrating the market. This program considers the current EDI guidelines for recruiting and training students in the newly emerging ITS area of automated vehicles, therefore addressing the current shortage of expertise in both the public and private sectors.
该研究计划提出了将联网和自动驾驶车辆(即自动驾驶车辆)集成到传统交通流中的建模工具。所提出的模型控制了传统车辆和自动车辆在不间断流设施上的相互作用。目标是让交通分析人员使用这些模型来评估下一代交通系统的可持续性。研究计划分为三个阶段。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alecsandru, Ciprian其他文献

Multi-Objective Stochastic Optimization Algorithms to Calibrate Microsimulation Models
  • DOI:
    10.1177/0361198119838260
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Karimi, Mohammad;Miriestahbanati, Maryam;Alecsandru, Ciprian
  • 通讯作者:
    Alecsandru, Ciprian
Two-fold calibration approach for microscopic traffic simulation models
  • DOI:
    10.1049/iet-its.2018.5369
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Karimi, Mohammad;Alecsandru, Ciprian
  • 通讯作者:
    Alecsandru, Ciprian

Alecsandru, Ciprian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alecsandru, Ciprian', 18)}}的其他基金

A Framework to Model Mixed Conventional and Automated Vehicular Traffic: Ameliorating Operations, Safety and Environmental Impacts
混合传统和自动车辆交通建模框架:改善运营、安全和环境影响
  • 批准号:
    RGPIN-2020-06760
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
A Framework to Model Mixed Conventional and Automated Vehicular Traffic: Ameliorating Operations, Safety and Environmental Impacts
混合传统和自动车辆交通建模框架:改善运营、安全和环境影响
  • 批准号:
    RGPIN-2020-06760
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Sustainability of Transportation Systems: Modeling Traffic Operations and Safety
交通系统的可持续性:交通运营和安全建模
  • 批准号:
    RGPIN-2015-04906
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Sustainability of Transportation Systems: Modeling Traffic Operations and Safety
交通系统的可持续性:交通运营和安全建模
  • 批准号:
    RGPIN-2015-04906
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Sustainability of Transportation Systems: Modeling Traffic Operations and Safety
交通系统的可持续性:交通运营和安全建模
  • 批准号:
    RGPIN-2015-04906
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Sustainability of Transportation Systems: Modeling Traffic Operations and Safety
交通系统的可持续性:交通运营和安全建模
  • 批准号:
    RGPIN-2015-04906
  • 财政年份:
    2016
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Sustainability of Transportation Systems: Modeling Traffic Operations and Safety
交通系统的可持续性:交通运营和安全建模
  • 批准号:
    RGPIN-2015-04906
  • 财政年份:
    2015
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
A modeling framework for large-scale traffic networks
大规模交通网络建模框架
  • 批准号:
    341281-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
A modeling framework for large-scale traffic networks
大规模交通网络建模框架
  • 批准号:
    341281-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
A modeling framework for large-scale traffic networks
大规模交通网络建模框架
  • 批准号:
    341281-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
  • 批准号:
    81503449
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
  • 批准号:
    30873339
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: OAC: RUI: Real-Time, Mixed-Integer Model Predictive Control via Learned GPU-Acceleration
CRII:OAC:RUI:通过学习 GPU 加速进行实时混合整数模型预测控制
  • 批准号:
    2246022
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Role of Complement Receptor Activation in a Mixed Dementia Model
补体受体激活在混合痴呆模型中的作用
  • 批准号:
    10585080
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
A Framework to Model Mixed Conventional and Automated Vehicular Traffic: Ameliorating Operations, Safety and Environmental Impacts
混合传统和自动车辆交通建模框架:改善运营、安全和环境影响
  • 批准号:
    RGPIN-2020-06760
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Model predictive control of a mixed battery array for electricity grid storage
电网存储混合电池阵列的模型预测控制
  • 批准号:
    RGPIN-2019-04286
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
  • 批准号:
    2210208
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Pretest and shrinkage estimation methods for joint modeling of linear mixed models and the AFT model
线性混合模型和AFT模型联合建模的预测试和收缩估计方法
  • 批准号:
    573853-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
  • 批准号:
    2210372
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
  • 批准号:
    2210569
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Process evaluation of complex early-years interventions: developing a model of best practise through a mixed-methods case study approach
复杂的早期干预措施的过程评估:通过混合方法案例研究方法开发最佳实践模型
  • 批准号:
    2735050
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Studentship
The Minimal Model Program in Positive and Mixed Characteristics
正特征和混合特征的最小模型程序
  • 批准号:
    2306854
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了