A Framework to Model Mixed Conventional and Automated Vehicular Traffic: Ameliorating Operations, Safety and Environmental Impacts

混合传统和自动车辆交通建模框架:改善运营、安全和环境影响

基本信息

  • 批准号:
    RGPIN-2020-06760
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This research program proposes modeling tools that integrate connected and autonomous vehicles (i.e., automated vehicles) into conventional traffic streams. The proposed models control the interactions between conventional and automated vehicles on uninterrupted flow facilities. The goal is for such models to be used by transportation analysts to assess the sustainability of the next generation transportation systems. The research program is divided into three stages. The first stage will extend previously developed mixed traffic flow models into a unified methodology to capture vehicle interactions in mixed traffic. This methodology will be suitable to assess traffic conditions (i.e., delay, safety, emissions) on highways with various proportions of automated and conventional vehicles. Specific control algorithms will be developed to model mixed traffic considering different driving maneuvers (e.g., free-flow and passing maneuvers lane selection, access and egress to/from highway ramps, etc.). The developed methodology has to be integrated into the evaluation methods of traffic operations. Thus, the existing highway capacity methodology has to be adjusted to account for the effects of automated vehicles into mixed traffic flows. Next generation transportation systems are expected to contribute to the sustainability of transportation development, hence the need to define accurate modeling tools that can assist decision makers in promoting appropriate transportation management policies. The second stage of the research program will develop a methodology to evaluate the three-fold benefits of automated vehicles (i.e., potential to reduce delay due to traffic congestion, to improve safety at locations with increased vehicular conflicts, and to ameliorate the environmental impact by reducing vehicle's GHG emissions). This will be done by calibrating the parameters of the control algorithms of automated vehicles, while considering various ratios between automated and conventional vehicles in mixed traffic flows. Traffic data available from other projects will be complemented by data collection through the available smart traffic controllers. In the third stage, the research team will validate the developed models by assessing the effects of mixed traffic flows on the specific case of reserved-lanes facilities (e.g., bus lanes, HOV lanes, etc.). Different ratios of automated vehicles will be considered for the analysis of traffic operations, safety and environment. Hence, a trade-off will be identified between gradual development of the next generation transportation infrastructures versus waiting a longer period until a critical mass of automated vehicles are penetrating the market. This program considers the current EDI guidelines for recruiting and training students in the newly emerging ITS area of automated vehicles, therefore addressing the current shortage of expertise in both the public and private sectors.
该研究计划提出了集成互联和自动驾驶车辆的建模工具(即,自动化车辆)进入常规交通流。所提出的模型控制传统和自动化车辆之间的相互作用的不间断流设施。我们的目标是让运输分析师使用这些模型来评估下一代运输系统的可持续性。研究计划分为三个阶段。第一阶段将把以前开发的混合交通流模型扩展成一个统一的方法,以捕捉混合交通中的车辆相互作用。这种方法将适用于评估交通状况(即,延迟、安全性、排放),以及不同比例的自动化和传统车辆。将开发特定的控制算法来模拟考虑不同驾驶操作的混合交通(例如,自由流动和通过机动车道选择、进出高速公路坡道等)。开发的方法必须集成到交通运营的评价方法。因此,现有的公路通行能力方法必须进行调整,以考虑到自动驾驶汽车对混合交通流的影响。下一代交通运输系统预计将有助于交通运输发展的可持续性,因此需要定义准确的建模工具,可以帮助决策者促进适当的交通运输管理政策。研究计划的第二阶段将开发一种方法来评估自动驾驶汽车的三重好处(即,减少因交通拥堵造成的延误、提高车辆冲突增加地点的安全性以及通过减少车辆GHG排放来改善环境影响的潜力)。这将通过校准自动车辆的控制算法的参数,同时考虑在混合交通流中自动和传统车辆之间的各种比率来完成。其他项目的交通数据将通过现有的智能交通控制器收集数据来补充。在第三阶段,研究小组将通过评估混合交通流对预留车道设施(例如,公共汽车车道、HOV车道等)。在分析交通运营、安全和环境时将考虑自动驾驶汽车的不同比例。因此,将在下一代交通基础设施的逐步发展与等待更长时间直到自动驾驶汽车进入市场之间进行权衡。该计划考虑了当前EDI在新兴的ITS自动驾驶汽车领域招聘和培训学生的指导方针,从而解决了公共和私营部门目前缺乏专业知识的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alecsandru, Ciprian其他文献

Multi-Objective Stochastic Optimization Algorithms to Calibrate Microsimulation Models
  • DOI:
    10.1177/0361198119838260
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Karimi, Mohammad;Miriestahbanati, Maryam;Alecsandru, Ciprian
  • 通讯作者:
    Alecsandru, Ciprian
Two-fold calibration approach for microscopic traffic simulation models
  • DOI:
    10.1049/iet-its.2018.5369
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Karimi, Mohammad;Alecsandru, Ciprian
  • 通讯作者:
    Alecsandru, Ciprian

Alecsandru, Ciprian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alecsandru, Ciprian', 18)}}的其他基金

A Framework to Model Mixed Conventional and Automated Vehicular Traffic: Ameliorating Operations, Safety and Environmental Impacts
混合传统和自动车辆交通建模框架:改善运营、安全和环境影响
  • 批准号:
    RGPIN-2020-06760
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
A Framework to Model Mixed Conventional and Automated Vehicular Traffic: Ameliorating Operations, Safety and Environmental Impacts
混合传统和自动车辆交通建模框架:改善运营、安全和环境影响
  • 批准号:
    RGPIN-2020-06760
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Sustainability of Transportation Systems: Modeling Traffic Operations and Safety
交通系统的可持续性:交通运营和安全建模
  • 批准号:
    RGPIN-2015-04906
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Sustainability of Transportation Systems: Modeling Traffic Operations and Safety
交通系统的可持续性:交通运营和安全建模
  • 批准号:
    RGPIN-2015-04906
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Sustainability of Transportation Systems: Modeling Traffic Operations and Safety
交通系统的可持续性:交通运营和安全建模
  • 批准号:
    RGPIN-2015-04906
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Sustainability of Transportation Systems: Modeling Traffic Operations and Safety
交通系统的可持续性:交通运营和安全建模
  • 批准号:
    RGPIN-2015-04906
  • 财政年份:
    2016
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Sustainability of Transportation Systems: Modeling Traffic Operations and Safety
交通系统的可持续性:交通运营和安全建模
  • 批准号:
    RGPIN-2015-04906
  • 财政年份:
    2015
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
A modeling framework for large-scale traffic networks
大规模交通网络建模框架
  • 批准号:
    341281-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
A modeling framework for large-scale traffic networks
大规模交通网络建模框架
  • 批准号:
    341281-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
A modeling framework for large-scale traffic networks
大规模交通网络建模框架
  • 批准号:
    341281-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
  • 批准号:
    81503449
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
  • 批准号:
    30873339
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: OAC: RUI: Real-Time, Mixed-Integer Model Predictive Control via Learned GPU-Acceleration
CRII:OAC:RUI:通过学习 GPU 加速进行实时混合整数模型预测控制
  • 批准号:
    2246022
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Role of Complement Receptor Activation in a Mixed Dementia Model
补体受体激活在混合痴呆模型中的作用
  • 批准号:
    10585080
  • 财政年份:
    2023
  • 资助金额:
    $ 1.89万
  • 项目类别:
Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
  • 批准号:
    2210208
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Model predictive control of a mixed battery array for electricity grid storage
电网存储混合电池阵列的模型预测控制
  • 批准号:
    RGPIN-2019-04286
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Pretest and shrinkage estimation methods for joint modeling of linear mixed models and the AFT model
线性混合模型和AFT模型联合建模的预测试和收缩估计方法
  • 批准号:
    573853-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
  • 批准号:
    2210372
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
  • 批准号:
    2210569
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Process evaluation of complex early-years interventions: developing a model of best practise through a mixed-methods case study approach
复杂的早期干预措施的过程评估:通过混合方法案例研究方法开发最佳实践模型
  • 批准号:
    2735050
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Studentship
The Minimal Model Program in Positive and Mixed Characteristics
正特征和混合特征的最小模型程序
  • 批准号:
    2306854
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Structure and rheology of mixed hydrocolloid gels as model systems for food 3D printing
作为食品 3D 打印模型系统的混合水胶体凝胶的结构和流变学
  • 批准号:
    RGPIN-2019-05048
  • 财政年份:
    2022
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了