Integrable systems, gravity and moduli spaces

可积系统、重力和模空间

基本信息

  • 批准号:
    RGPIN-2020-06816
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The modern theory of integrable systems can be traced back to the XIXth century, when British engineer John Scott Russell observed a soliton (which he called the "wave of translation") in the Union Canal at Hermiston, Edinbourg. This event, which happened in August, 1834, found its explanation only in the middle of 20th century, when the modern theory of integrable systems (and in particular the theory of Korteveg-de-Vries equation which describes non-linear waves on shallow water observed by Russell) started its explosive development. Other roots of the theory lie in the classical geometry of surfaces: another classical integrable system - the sine-Gordon equation - appeared in works of Bianchi in 1920's; about the same time the theory of isomonodromy deformations by Schlesinger and Painlevé equations were discovered. By now the theory of integrable systems has developed into a very powerful tool used in various branches of mathematics and physics. A fundamental development in the evolution of integrable systems occurred in the '80s when the Japanese school of Jimbo connected two distant areas of science; the theory of integrable waves and statistical physics on one side and the pure mathematical endeavor of P. Painlevé, who was interested in the classification of ordinary differential equations. The result of this merge was the invention of the theory of a certain special class of functions, named "tau-functions" which now appear in ever more numerous areas of mathematics, physics and even combinatorics. The goal of the project is to develop the theory tau functions and apply to the theory of moduli spaces, certain dynamical systems introduced by N. Hitchin in the '90s and the theory of the Schrödinger equation on Riemann surfaces and its "semiclassical" analysis. We are going to define the tau-function for isomonodromic deformations on Riemann surfaces of non-trivial topology (the "higher genus surfaces") and relate it to the Hamiltonian formalism of monodromy map. Furthermore, we are going to apply the theory of tau-functions to Hitchin systems. We shall also study the Schrödiger equation on a Riemann surface, together with its Wentzel-Kramers-Brillouin (WKB) approximation and monodromy map. This object turns out to have a rich and beautiful geometric structure, and also plays an important role in the theory of Yang-Mills equations. Natural quantization of classical integrable systems produces many physically important quantum models which can be treated explicitly. One of such models appears in the theory of gravity - it is the model of Einstein-Rosen waves with two polarizations. Such model can be quantized on algebraic level, and it turns out to arise in one of natural approaches to quantization of the full four-dimensional gravity. The completion of the development of the quantum model of non-linear Einstein-Rosen waves is one of the main goals of the proposal.
可积系统的现代理论可以追溯到19世纪,当时英国工程师约翰·斯科特·罗素(John Scott Russell)在爱丁堡赫米斯顿的联合运河(Union Canal)观察到一个孤子(他称之为“平移波”)。这一事件发生在1834年8月,直到20世纪中叶,现代可积系统理论(特别是描述罗素观测到的浅水非线性波浪的科尔特维格-德-弗瑞斯方程理论)才开始得到爆炸性的发展,才找到了解释。该理论的其他根源在于经典曲面几何:另一个经典的可积系统——正弦戈登方程——出现在比安奇20世纪20年代的著作中;大约在同一时间,由施莱辛格和painlev<s:1>方程建立的等单调变形理论被发现。到目前为止,可积系统理论已经发展成为一个非常强大的工具,用于数学和物理的各个分支。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Korotkin, Dmitry其他文献

Korotkin, Dmitry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Korotkin, Dmitry', 18)}}的其他基金

Integrable systems, gravity and moduli spaces
可积系统、重力和模空间
  • 批准号:
    RGPIN-2020-06816
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems, gravity and moduli spaces
可积系统、重力和模空间
  • 批准号:
    RGPIN-2020-06816
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems, moduli spaces and spectral geometry
可积系统、模空间和谱几何
  • 批准号:
    RGPIN-2015-03827
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems, moduli spaces and spectral geometry
可积系统、模空间和谱几何
  • 批准号:
    RGPIN-2015-03827
  • 财政年份:
    2018
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems, moduli spaces and spectral geometry
可积系统、模空间和谱几何
  • 批准号:
    RGPIN-2015-03827
  • 财政年份:
    2017
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems, moduli spaces and spectral geometry
可积系统、模空间和谱几何
  • 批准号:
    RGPIN-2015-03827
  • 财政年份:
    2016
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Integrable systems, moduli spaces and spectral geometry
可积系统、模空间和谱几何
  • 批准号:
    RGPIN-2015-03827
  • 财政年份:
    2015
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Algebro-geometric methods in integrable systems, random matrices and spectral geometry
可积系统、随机矩阵和谱几何中的代数几何方法
  • 批准号:
    227154-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Algebro-geometric methods in integrable systems, random matrices and spectral geometry
可积系统、随机矩阵和谱几何中的代数几何方法
  • 批准号:
    227154-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Algebro-geometric methods in integrable systems, random matrices and spectral geometry
可积系统、随机矩阵和谱几何中的代数几何方法
  • 批准号:
    227154-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
  • 批准号:
    31971398
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
新型非对称频分双工系统及其射频关键技术研究
  • 批准号:
    61102055
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
超高频超宽带系统射频基带补偿理论与技术的研究
  • 批准号:
    61001097
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
相关信道环境下MIMO-OFDM系统的空时码设计问题研究
  • 批准号:
    60572117
  • 批准年份:
    2005
  • 资助金额:
    6.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a Smart Shunt with ICP-feedback for the Treatment of Hydrocephalus
开发用于治疗脑积水的具有 ICP 反馈的智能分流器
  • 批准号:
    10699566
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Multi-organ culture and pumping systems for ex vivo models of immunity in hybrid tissue-chips
用于混合组织芯片中免疫离体模型的多器官培养和泵系统
  • 批准号:
    10578463
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
CAREER: Towards Low-Energy Tests of Quantum Gravity with AMO Systems
职业生涯:利用 AMO 系统进行量子引力的低能量测试
  • 批准号:
    2239498
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
Precision breast radiotherapy with the soft robot and supine CT
使用软体机器人和仰卧位 CT 进行精准乳腺放射治疗
  • 批准号:
    10445911
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
A Randomized Clinical Trial of Scenario Planning for Older Adults with Serious Injury
严重损伤老年人情景规划的随机临床试验
  • 批准号:
    10708157
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
LEAPS-MPS: Investigating Emergent Gravity in Combinatorial Quantum Systems
LEAPS-MPS:研究组合量子系统中的涌现引力
  • 批准号:
    2138323
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
Design and Model-Based Safety Verification of a Volitional Sit-Stand Controller for a Powered Knee-Ankle Prosthesis
动力膝踝假肢自主坐站控制器的设计和基于模型的安全验证
  • 批准号:
    10570170
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
A closed-loop gravity infusion control device
一种闭环重力输液控制装置
  • 批准号:
    10384629
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
Design and Model-Based Safety Verification of a Volitional Sit-Stand Controller for a Powered Knee-Ankle Prosthesis
动力膝踝假肢自主坐站控制器的设计和基于模型的安全验证
  • 批准号:
    10388466
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
Supplement: Design and Model-Based Safety Verification of a Volitional Sit-Stand Controller for a Powered Knee-Ankle Prosthesis
补充:动力膝踝假肢自主坐站控制器的设计和基于模型的安全验证
  • 批准号:
    10785336
  • 财政年份:
    2022
  • 资助金额:
    $ 2.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了