Multi-Mode RF Electron Pulse Compression for Ultrafast Electron Scattering

用于超快电子散射的多模式射频电子脉冲压缩

基本信息

  • 批准号:
    RTI-2021-00355
  • 负责人:
  • 金额:
    $ 10.57万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Research Tools and Instruments
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

There is currently an enormous, worldwide effort directed at the development and application of new experimental methods that make it possible to directly watch' the time evolving structure of matter. These approaches combine state-of-the-art femtosecond lasers (see Nobel Prize in Physics, 2018) and sources of either ultrashort Xray or electron pulses to acquire time-resolved diffraction/scattering patterns and images. If time-resolution approaches ~10 femtoseconds - the timescale of the highest frequency vibrations in molecules and materials - atomic motion is essentially frozen during an observation and one can completely follow the fundamental dynamics to produce a "molecular movie"; the experimental equivalent of a molecular dynamics simulation. It is possible to watch chemical bonds break/form and directly determine transition-state structures for even complex reactions, to follow phase transition dynamics uncovering the deep connections between the structure and properties of materials, and directly observe the coupling between charge, orbital and lattice degrees of freedom in time and momentum. This proposal is focused on the further development of the World's most powerful ultrafast electron scattering instrument, designed, built and operating at McGill University. We are requesting equipment that builds on our previous successes and enables ultrafast electron scattering at an unprecedented time resolution of ~50 fs. This new capability will open up an enormous new 'scientific space' to be explored. With the requested equipment, we expect to be able to shed new light on materials phenomena as diverse as superconductivity, charge density waves, thermoelectricity, photovoltaicity and carrier mobility in semiconductors and metals. We will be in a position to investigate the complex interplay between strong, multiorbital electronic correlations, structural distortions, charge and orbital order across a range of strongly correlated material where this physics determines properties (transition metal oxides, pyrochlore oxides, manganites and cuprates), and the formation dynamics of quasiparticles in these systems. Further, there is also the possibility of discovering new photoinduced phases and avenues for optical control of complex materials using the proposed tools; a topic at the forefront of materials research.
目前,全世界都在努力开发和应用新的实验方法,使直接观察物质结构的时间演变成为可能。这些方法结合了联合收割机最先进的飞秒激光器(参见2018年诺贝尔物理学奖)和超短X射线或电子脉冲源,以获得时间分辨的衍射/散射图案和图像。如果时间分辨率接近~10飞秒-分子和材料中最高频率振动的时间尺度-原子运动在观察期间基本上被冻结,并且可以完全遵循基本动力学来产生“分子电影”;分子动力学模拟的实验等效物。可以观察化学键的断裂/形成,并直接确定甚至复杂反应的过渡态结构,遵循相变动力学,揭示材料结构和性质之间的深层联系,并直接观察电荷,轨道和晶格自由度之间的耦合。 该提案的重点是进一步开发世界上最强大的超快电子散射仪器,该仪器由麦吉尔大学设计、建造和运行。我们正在请求建立在我们先前成功基础上的设备,并以前所未有的~50 fs时间分辨率实现超快电子散射。这种新的能力将开辟一个巨大的新的“科学空间”进行探索。通过所要求的设备,我们希望能够对半导体和金属中的超导性、电荷密度波、热电性、光致发光性和载流子迁移率等各种材料现象进行新的研究。我们将能够研究强,多轨道电子相关性,结构扭曲,电荷和轨道顺序之间的复杂相互作用,在一系列强相关的材料中,这种物理学决定了性质(过渡金属氧化物,烧绿石氧化物,锰氧化物和铜酸盐),以及这些系统中准粒子的形成动力学。 此外,还有可能发现新的光诱导阶段和途径,使用所提出的工具对复杂材料进行光学控制;这是材料研究的前沿课题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siwick, Bradley其他文献

Siwick, Bradley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siwick, Bradley', 18)}}的其他基金

Direct Electron Detection Camera for Next-Generation Sensitivity in Ultrafast Electron Scattering Measurements
直接电子探测相机可提高超快电子散射测量中的下一代灵敏度
  • 批准号:
    RTI-2023-00449
  • 财政年份:
    2022
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Research Tools and Instruments
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
  • 批准号:
    RGPIN-2019-06001
  • 财政年份:
    2022
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
  • 批准号:
    RGPIN-2019-06001
  • 财政年份:
    2021
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
  • 批准号:
    RGPIN-2019-06001
  • 财政年份:
    2020
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
  • 批准号:
    RGPIN-2019-06001
  • 财政年份:
    2019
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Discovery Grants Program - Individual
Ultrafast Electron Scattering at Low Temperatures
低温下超快电子散射
  • 批准号:
    RTI-2019-00586
  • 财政年份:
    2018
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Research Tools and Instruments
Ultrafast Structural Dynamics in Materials at Atomic to Microscale Resolution
原子级至微米级分辨率的材料超快结构动力学
  • 批准号:
    RGPIN-2014-04013
  • 财政年份:
    2018
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Discovery Grants Program - Individual
The lockbox: phase-locked temporal lenses for time-resolved electron microscopy
密码箱:用于时间分辨电子显微镜的锁相时间透镜
  • 批准号:
    530379-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Idea to Innovation
An RF cavity-based ultrafast electron energy loss spectrometer: A new tool for unraveling dynamic processes in materials
基于射频腔的超快电子能量损失谱仪:一种用于揭示材料动态过程的新工具
  • 批准号:
    RTI-2018-00862
  • 财政年份:
    2017
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Research Tools and Instruments
Ultrafast Structural Dynamics in Materials at Atomic to Microscale Resolution
原子级至微米级分辨率的材料超快结构动力学
  • 批准号:
    RGPIN-2014-04013
  • 财政年份:
    2017
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

miR-200c 通过NEK7 靶向调控MODE-K 细胞焦亡在溃疡性结肠炎中的作用和机制研究
  • 批准号:
    2021JJ30973
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
复合材料结构多源损伤的阵列导波UCA-mode域免基准监测研究
  • 批准号:
    12002172
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
H-mode条件下共振磁扰动场诱导的边缘等离子体区域的粒子输运实验研究
  • 批准号:
    11875234
  • 批准年份:
    2018
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
H-mode条件下等离子体台基区粒子输运实验研究
  • 批准号:
    11175056
  • 批准年份:
    2011
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于list-mode数据的快速SART真3D PET断层重建算法的研究
  • 批准号:
    81171410
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Improving efficacy of biopesticides through understanding mode of action
通过了解作用方式提高生物农药的功效
  • 批准号:
    IE230100103
  • 财政年份:
    2024
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Early Career Industry Fellowships
Tuneable short-wavelength infrared mode-locked fibre lasers
可调谐短波长红外锁模光纤激光器
  • 批准号:
    EP/Y001915/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Research Grant
CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
  • 批准号:
    2338798
  • 财政年份:
    2024
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Continuing Grant
An Alternative Mode of Student Well-Being or Unhappy Schools? Exploring Interdependence in Education across East and Southeast Asia, Building Evidence to Impact the Post-SDG 2030 Global Policy Agenda
学生福祉的替代模式还是不快乐的学校?
  • 批准号:
    23K25636
  • 财政年份:
    2024
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
  • 批准号:
    2411394
  • 财政年份:
    2024
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Standard Grant
A next generation 'smart' superconducting magnet system in persistent mode
持久模式下的下一代“智能”超导磁体系统
  • 批准号:
    LP220200969
  • 财政年份:
    2024
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Linkage Projects
Simply forever: Tackling PFAS complexity through mode of action assignment
永远简单:通过行动模式分配解决 PFAS 复杂性
  • 批准号:
    NE/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Research Grant
RadioForegrounds+: Unveiling the complexity of radio foregrounds for the detectability of the CMB polarization B-mode
RadioForegrounds:揭示无线电前景的复杂性,以实现 CMB 极化 B 模式的可检测性
  • 批准号:
    10101603
  • 财政年份:
    2024
  • 资助金额:
    $ 10.57万
  • 项目类别:
    EU-Funded
テラヘルツ帯whispering gallery mode共鳴分光法の開発
太赫兹波段回音壁模式共振光谱学的发展
  • 批准号:
    24KJ1678
  • 财政年份:
    2024
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exploring the spin-orbit interaction of light in the whispering gallery mode hollow-microcavities
探索回音壁模式中空微腔中光的自旋轨道相互作用
  • 批准号:
    24K08290
  • 财政年份:
    2024
  • 资助金额:
    $ 10.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了