Multi-Modal Imaging System for Real-Time Liquid Leak Detection

用于实时液体泄漏检测的多模态成像系统

基本信息

  • 批准号:
    543694-2019
  • 负责人:
  • 金额:
    $ 1.24万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The oil and gas pipeline integrity management program (IMP) is to ensure the safe operation of the energy transportation infrastructure. The early detection of a small leak from above-ground facilities is a key element of the IMP and paramount for environmental safety and protection. The challenges come from the complicated situations of liquid leaks in a dynamic environment. An intelligent leak detection system, which is capable of detecting those leaks accurately and timely, is expected to address this issue. This research aims to develop computational algorithms, which can enhance the machine vision based leak detection with higher accuracy and lower false alarm rate. This intelligent vision system, which is comprised of visible and infrared imaging, will employ the advanced deep learning techniques and industry-level hardware to enable continuous and reliable monitoring of the pipeline infrastructure. Continuous monitoring allows detecting leaks quicker, reducing the environmental impacts from leaks and improve pipeline performance in high-risk areas. Thus, this research will contribute to the healthy growth of Canada's energy sector that provides countless economic benefits to Canadians across the country.
石油和天然气管道完整性管理计划(IMP)是为了确保能源运输基础设施的安全运行。及早发现地面设施的小泄漏是国际监测方案的一个关键要素,对环境安全和保护至关重要。挑战来自于动态环境中液体泄漏的复杂情况。一个智能泄漏检测系统,这是能够准确和及时地检测到这些泄漏,预计将解决这个问题。 本研究的目的是开发计算算法,可以提高基于机器视觉的泄漏检测的准确性和低误报率。该智能视觉系统由可见光和红外成像组成,将采用先进的深度学习技术和行业级硬件,以实现对管道基础设施的连续可靠监控。连续监测可以更快地检测泄漏,减少泄漏对环境的影响,并提高高风险地区的管道性能。因此,这项研究将有助于加拿大能源部门的健康发展,为全国各地的加拿大人提供无数的经济利益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liu, Zheng其他文献

Classification of defects with ensemble methods in the automated visual inspection of sewer pipes
下水道管道自动目视检测中的集成方法缺陷分类
  • DOI:
    10.1007/s10044-013-0355-5
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Wu, Wei;Liu, Zheng;He, Yan
  • 通讯作者:
    He, Yan
IFN-α Confers Resistance of Systemic Lupus Erythematosus Nephritis to Therapy in NZB/W F1 Mice
  • DOI:
    10.4049/jimmunol.1004142
  • 发表时间:
    2011-08-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Liu, Zheng;Bethunaickan, Ramalingam;Davidson, Anne
  • 通讯作者:
    Davidson, Anne
Finite element modeling of acoustic wave propagation and energy deposition in bone during extracorporeal shock wave treatment
体外冲击波治疗过程中声波传播和骨内能量沉积的有限元建模
  • DOI:
    10.1063/1.4812232
  • 发表时间:
    2013-06
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Wang, Xiaofeng;Matula, Thomas J.;Ma, Yong;Liu, Zheng;Tu, Juan;Guo, Xiasheng;Zhang, Dong
  • 通讯作者:
    Zhang, Dong
Cardiotoxicity of current antipsychotics: Newer antipsychotics or adjunct therapy?
  • DOI:
    10.5498/wjp.v12.i8.1108
  • 发表时间:
    2022-08-19
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Liu, Zheng;Zhang, Mo-Lin;Tang, Xin-Ru;Li, Xiao-Qing;Wang, Jing;Li, Li-Liang
  • 通讯作者:
    Li, Li-Liang
Sarcopenic obesity and therapeutic outcomes in gastrointestinal surgical oncology: A meta-analysis.
  • DOI:
    10.3389/fnut.2022.921817
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Wang, Peiyu;Wang, Shaodong;Ma, Yi;Li, Haoran;Liu, Zheng;Lin, Guihu;Li, Xiao;Yang, Fan;Qiu, Mantang
  • 通讯作者:
    Qiu, Mantang

Liu, Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liu, Zheng', 18)}}的其他基金

Digital twin computing for predictive maintenance of industrial systems
用于工业系统预测维护的数字孪生计算
  • 批准号:
    RGPIN-2022-03535
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Optimizing mill performance through machine learning empowered sensing data analytics
通过机器学习赋能传感数据分析来优化工厂性能
  • 批准号:
    566919-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Alliance Grants
Towards proactive maintenance of buried infrastructure with cloud-based sensing and predictive analytics
通过基于云的传感和预测分析来主动维护埋地基础设施
  • 批准号:
    RGPIN-2017-04408
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Embedded AI for Continuous Health Monitoring Patch
用于持续健康监测补丁的嵌入式人工智能
  • 批准号:
    571106-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Alliance Grants
Empowering the pipedriver technology for water pipeline inspection through multi-sensor data analytics
通过多传感器数据分析,为水管检查提供管道驱动技术
  • 批准号:
    523761-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Collaborative Research and Development Grants
Multi-Modal Imaging System for Real-Time Liquid Leak Detection
用于实时液体泄漏检测的多模态成像系统
  • 批准号:
    543694-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Collaborative Research and Development Grants
Towards proactive maintenance of buried infrastructure with cloud-based sensing and predictive analytics
通过基于云的传感和预测分析来主动维护埋地基础设施
  • 批准号:
    RGPIN-2017-04408
  • 财政年份:
    2020
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual
Empowering the pipedriver technology for water pipeline inspection through multi-sensor data analytics
通过多传感器数据分析,为水管检查提供管道驱动技术
  • 批准号:
    523761-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Collaborative Research and Development Grants
Multi-Modal Imaging System for Real-Time Liquid Leak Detection
用于实时液体泄漏检测的多模态成像系统
  • 批准号:
    543694-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Collaborative Research and Development Grants
Towards proactive maintenance of buried infrastructure with cloud-based sensing and predictive analytics
通过基于云的传感和预测分析来主动维护埋地基础设施
  • 批准号:
    RGPIN-2017-04408
  • 财政年份:
    2019
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
  • 批准号:
    EP/Z531133/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Research Grant
Multi-scale, multi-modal X-ray imaging using speckle
使用散斑的多尺度、多模态 X 射线成像
  • 批准号:
    DE220101402
  • 财政年份:
    2024
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Discovery Early Career Researcher Award
Artificial intelligence empowered multi-modal biomedical imaging
人工智能赋能多模态生物医学成像
  • 批准号:
    IM230100002
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Mid-Career Industry Fellowships
Multi-modal imaging and visualization of digestion-absorption process of nutritional components in the gastrointestinal tract
胃肠道营养成分消化吸收过程的多模态成像与可视化
  • 批准号:
    23H02159
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multi-modal, multi-parametric liver imaging for ultrasound-based stratification of patients with non-alcoholic fatty liver disease
多模式、多参数肝脏成像对非酒精性脂肪肝患者进行基于超声的分层
  • 批准号:
    478764
  • 财政年份:
    2023
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Operating Grants
High-resolution multi-modal ultrasound imaging of brain development in Batten disease models
巴顿病模型中大脑发育的高分辨率多模态超声成像
  • 批准号:
    10429881
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
Imaging synaptic density in young adults with and without psychosis-like experiences and a history of adolescent cannabis use: A neuroimaging study using [18F]-SDM-8 in a cohort with longitudinal multi-modal neuroimaging data
有或没有精神病样经历和青少年大麻使用史的年轻人的突触密度成像:在纵向多模式神经影像数据队列中使用 [18F]-SDM-8 进行的神经影像研究
  • 批准号:
    473908
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Fellowship Programs
Linking Head Kinematics and Multi-Modal Imaging Using a Finite Element Head Model to Assess mTBI Risk Mitigation
使用有限元头部模型将头部运动学和多模态成像联系起来以评估 mTBI 风险缓解
  • 批准号:
    558260-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
    Alliance Grants
Identification of Multi-modal Imaging Biomarkers for Early Prediction of MCI-AD Conversion via Multigraph Representation
通过多图表示识别多模态成像生物标志物以早期预测 MCI-AD 转换
  • 批准号:
    10510971
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
The Bone Marrow Multi-modal Imaging Core
骨髓多模态成像核心
  • 批准号:
    10531007
  • 财政年份:
    2022
  • 资助金额:
    $ 1.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了