Secure federated learning at the edge

确保边缘联合学习的安全

基本信息

  • 批准号:
    568539-2021
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Federated Learning (FL) is emerging as one of the fundamental Machine Learning (ML) models that supports distributed model training with privacy-preserving characteristics. Ever since its inception in 2017 by Google AI, it is being utilized across different verticals such as e-healthcare, smart grids, industrial sector, insurance sector, autonomous vehicles, FinTech, etc. Some of the characteristic advantages of FL against the traditional ML models include data privacy and diversity, real-time data analysis even during low/no Internet connectivity, hardware efficiency, etc. Despite these advantages, FL is founded vulnerable to different cyberattacks such as data and model poisoning, inferences, backdoors, malicious server, communication bottlenecks, etc.Thus, as part of this research project, we propose to develop an efficient, secure, and privacy-aware FL framework that can be leveraged across different application domains using the Edge computing paradigm. The research will employee the advantages of differential privacy, homomorphic encryption, and blockchain; and the designed framework will be validated on real-time and benchmark datasets for enhanced efficacy. This research will allow the Canada-based company Cistech Ltd to develop more robust, secure, and privacy-preserving FL-based solutions for its client, paying special attention to the on-going outbreak of different attack vectors on the ML models with increasing complexity and sophistication. Thus, the company will be able to ensure the deployment of secure FL-based solutions to it clients. The designed solution during this research will be transferred to industry and can be deployed in their upcoming projects across different domains.
联邦学习(FL)正在成为支持具有隐私保护特性的分布式模型训练的基本机器学习(ML)模型之一。自2017年由Google AI推出以来,它已被用于不同的垂直行业,如电子医疗保健,智能电网,工业部门,保险部门,自动驾驶汽车,金融科技等FL相对于传统ML模型的一些特征优势包括数据隐私和多样性,即使在低/无互联网连接,硬件效率等情况下的实时数据分析。FL被发现容易受到不同的网络攻击,如数据和模型中毒,推理,后门,恶意服务器,通信瓶颈等,因此,作为本研究项目的一部分,我们建议开发一个高效,安全,隐私意识FL框架,可以利用不同的应用领域使用边缘计算范式。该研究将利用差分隐私、同态加密和区块链的优势;设计的框架将在实时和基准数据集上进行验证,以提高效率。这项研究将使总部位于加拿大的公司CiscoTech Ltd能够为其客户开发更强大,更安全,更隐私保护的基于FL的解决方案,特别关注ML模型上不断爆发的不同攻击向量,这些攻击向量越来越复杂和复杂。因此,该公司将能够确保向其客户部署安全的基于FL的解决方案。在此研究期间设计的解决方案将被转移到行业,并可以在不同领域的即将到来的项目中部署。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Agarwal, Anjali其他文献

Profit optimization in multi-service cognitive mesh network using machine learning
A miraculous recovery: Bartonella henselae infection following a red ant bite.
  • DOI:
    10.1136/bcr-2017-222326
  • 发表时间:
    2018-05-04
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Guru, Pramod K;Agarwal, Anjali;Fritz, Ashley
  • 通讯作者:
    Fritz, Ashley
Towards Securing Routing Based on Nodes Behavior During Spectrum Sensing in Cognitive Radio Networks
  • DOI:
    10.1109/access.2020.3024662
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Khasawneh, Mahmoud;Azab, Ahmad;Agarwal, Anjali
  • 通讯作者:
    Agarwal, Anjali
A deep learning framework for inference of single-trial neural population dynamics from calcium imaging with subframe temporal resolution.
  • DOI:
    10.1038/s41593-022-01189-0
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    25
  • 作者:
    Zhu, Feng;Grier, Harrison A.;Tandon, Raghav;Cai, Changjia;Agarwal, Anjali;Giovannucci, Andrea;Kaufman, Matthew T.;Pandarinath, Chethan
  • 通讯作者:
    Pandarinath, Chethan
A Secure and Efficient Authentication Mechanism Applied to Cognitive Radio Networks
  • DOI:
    10.1109/access.2017.2723322
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Khasawneh, Mahmoud;Agarwal, Anjali
  • 通讯作者:
    Agarwal, Anjali

Agarwal, Anjali的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Agarwal, Anjali', 18)}}的其他基金

Microservices based Resource Management for next generation Cloud Computing paradigm
基于微服务的下一代云计算范式的资源管理
  • 批准号:
    RGPIN-2021-04018
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Microservices based Resource Management for next generation Cloud Computing paradigm
基于微服务的下一代云计算范式的资源管理
  • 批准号:
    RGPIN-2021-04018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Resource Management in Cognitive Radio-based Virtualized Heterogeneous Wireless Access Networks
基于认知无线电的虚拟化异构无线接入网络中的资源管理
  • 批准号:
    RGPIN-2015-05199
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Resource Management in Cognitive Radio-based Virtualized Heterogeneous Wireless Access Networks
基于认知无线电的虚拟化异构无线接入网络中的资源管理
  • 批准号:
    RGPIN-2015-05199
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Cloud infrastructure resource management
云基础设施资源管理
  • 批准号:
    486584-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative Research and Development Grants
Resource Management in Cognitive Radio-based Virtualized Heterogeneous Wireless Access Networks
基于认知无线电的虚拟化异构无线接入网络中的资源管理
  • 批准号:
    RGPIN-2015-05199
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Cloud infrastructure resource management
云基础设施资源管理
  • 批准号:
    486584-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative Research and Development Grants
Resource Management in Cognitive Radio-based Virtualized Heterogeneous Wireless Access Networks
基于认知无线电的虚拟化异构无线接入网络中的资源管理
  • 批准号:
    RGPIN-2015-05199
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Resource Management in Cognitive Radio-based Virtualized Heterogeneous Wireless Access Networks
基于认知无线电的虚拟化异构无线接入网络中的资源管理
  • 批准号:
    RGPIN-2015-05199
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Implementing a virtual computing laboratory as a local private cloud
将虚拟计算实验室实现为本地私有云
  • 批准号:
    454935-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Engage Grants Program

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
  • 批准号:
    2319742
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Efficient Federated Learning for Deep Learning Through Structured Training
通过结构化训练实现深度学习的高效联邦学习
  • 批准号:
    24K20845
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
  • 批准号:
    24K20848
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CRII: CSR: Adaptive Federated Continuous Learning on Heterogeneous Edge Devices with Unlabeled Data
CRII:CSR:具有未标记数据的异构边缘设备的自适应联合连续学习
  • 批准号:
    2348279
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
  • 批准号:
    2317079
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Federated Reinforcement Learning Empowered Point Cloud Video Streaming
联合强化学习赋能点云视频流
  • 批准号:
    24K14927
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
  • 批准号:
    2341359
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
  • 批准号:
    2340482
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
Quantum Federated Learning-driven Secure Industry Cloud Collaboration Framework
量子联邦学习驱动的安全行业云协作框架
  • 批准号:
    24K20781
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了