Artificial Intelligence for the Condition Assessment of Critical Infrastructure
用于关键基础设施状况评估的人工智能
基本信息
- 批准号:569563-2021
- 负责人:
- 金额:$ 1.76万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goals of this partnership are to improve testing speed, reproducibility, and accuracy of tools and techniques commonly used for monitoring structural deterioration of concrete. We will use artificial intelligence (AI) and deep learning (DL) to develop automated tools for on-site visual crack inspection and for lab-based microscopic techniques for concrete damage assessment. Our solutions will include rapid and reliable tools to i) automate computation of the cracking index (CI), using a smartphone application ("app") to analyze, in real time, pictures taken in-situ during visual inspections of structures, and ii) to automate the Damage Rating Index (DRI) calculation by applying image analysis (IA) techniques to high-resolution stereomicroscope images of concrete specimens. The proposed technology will significantly enhance two important concrete monitoring techniques: a) computation of the CI, a preliminary assessment of cause and extent of damage based on visual inspection of structures, and b) computation of the DRI, in which core samples retrieved from structures are inspected in a lab-based microscopic protocol to diagnose cause and extent of damage in concrete affected by distress mechanisms such as internal swelling reactions (ISR). Both methods have important limitations: CI requires in-situ qualitative investigations and, although useful as a preliminary indicator, its ability to assess damage of affected concrete is still unclear for structures presenting multiple distress mechanisms and under distinct degrees of confinement and exposure conditions. Computation of the DRI is a time-consuming, expertise-based, lab procedure. Both CI and DRI are subjective in nature and rely heavily on the skill and experience of the person performing the analysis. This project will enable rapid and reliable assessments of the nature and extent of concrete damage in critical infrastructure prevalent in Canada, such as bridges, dams, and buildings. This will, in turn, enable timely and cost-effective preventative rehabilitation strategies, thus ensuring a safer and more reliable built environment.
此次合作的目标是提高常用于监测混凝土结构劣化的工具和技术的测试速度、再现性和准确性。我们将使用人工智能 (AI) 和深度学习 (DL) 开发用于现场视觉裂缝检查的自动化工具以及用于混凝土损伤评估的基于实验室的显微技术。我们的解决方案将包括快速可靠的工具,用于 i) 自动计算开裂指数 (CI),使用智能手机应用程序(“应用程序”)实时分析结构目视检查期间现场拍摄的图片,以及 ii) 通过将图像分析 (IA) 技术应用于混凝土样本的高分辨率立体显微镜图像,自动计算损坏等级指数 (DRI)。 所提出的技术将显着增强两项重要的混凝土监测技术:a)CI计算,基于对结构的目视检查对损坏原因和程度进行初步评估;b)DRI计算,其中从结构中取出的核心样本在基于实验室的显微协议中进行检查,以诊断受内部膨胀反应(ISR)等遇险机制影响的混凝土损坏原因和程度。这两种方法都有重要的局限性:CI 需要现场定性调查,尽管作为初步指标很有用,但对于呈现多种损伤机制以及在不同程度的限制和暴露条件下的结构,其评估受影响混凝土损坏的能力仍不清楚。 DRI 的计算是一个耗时且基于专业知识的实验室程序。 CI 和 DRI 本质上都是主观的,并且在很大程度上依赖于执行分析人员的技能和经验。该项目将能够对加拿大普遍存在的关键基础设施(如桥梁、水坝和建筑物)的混凝土损坏的性质和程度进行快速、可靠的评估。反过来,这将实现及时且具有成本效益的预防性修复策略,从而确保更安全、更可靠的建筑环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MorettiSanchez, LeandroFrancisco其他文献
MorettiSanchez, LeandroFrancisco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MorettiSanchez, LeandroFrancisco', 18)}}的其他基金
Learning from the Champlain Bridge - Toward improved condition assessment diagnostics and prognostics supporting more effective bridge maintenance and rehabilitation
向尚普兰大桥学习 - 改进状况评估诊断和预测,支持更有效的桥梁维护和修复
- 批准号:
566567-2021 - 财政年份:2021
- 资助金额:
$ 1.76万 - 项目类别:
Alliance Grants
Optimization of eco-friendly mixtures composed by granite-based crushed aggregates and inert fillers for structural applications
用于结构应用的由花岗岩碎骨料和惰性填料组成的环保混合物的优化
- 批准号:
530552-2018 - 财政年份:2020
- 资助金额:
$ 1.76万 - 项目类别:
Collaborative Research and Development Grants
Avoiding & mitigating alkali-aggregate reaction (AAR) in concrete structures
避免
- 批准号:
506199-2016 - 财政年份:2019
- 资助金额:
$ 1.76万 - 项目类别:
Collaborative Research and Development Grants
Optimization of eco-friendly mixtures composed by granite-based crushed aggregates and inert fillers for structural applications
用于结构应用的由花岗岩碎骨料和惰性填料组成的环保混合物的优化
- 批准号:
530552-2018 - 财政年份:2019
- 资助金额:
$ 1.76万 - 项目类别:
Collaborative Research and Development Grants
Avoiding & mitigating alkali-aggregate reaction (AAR) in concrete structures
避免
- 批准号:
506199-2016 - 财政年份:2018
- 资助金额:
$ 1.76万 - 项目类别:
Collaborative Research and Development Grants
Optimization of eco-friendly mixtures composed by granite-based crushed aggregates and inert fillers for structural applications
用于结构应用的由花岗岩碎骨料和惰性填料组成的环保混合物的优化
- 批准号:
530552-2018 - 财政年份:2018
- 资助金额:
$ 1.76万 - 项目类别:
Collaborative Research and Development Grants
The Influence of the Binder Type & Aggregate Nature on the Electrical Resistivity of Conventional Concrete
粘合剂类型的影响
- 批准号:
532169-2018 - 财政年份:2018
- 资助金额:
$ 1.76万 - 项目类别:
Engage Grants Program
Modeling Concrete Infrastructure Affected by Alkali-Aggregate Reaction (AAR)
模拟受碱骨料反应 (AAR) 影响的混凝土基础设施
- 批准号:
515351-2017 - 财政年份:2017
- 资助金额:
$ 1.76万 - 项目类别:
Engage Grants Program
Avoiding & mitigating alkali-aggregate reaction (AAR) in concrete structures
避免
- 批准号:
506199-2016 - 财政年份:2017
- 资助金额:
$ 1.76万 - 项目类别:
Collaborative Research and Development Grants
Optimization of conventional and recycled concrete aggregate (RCA) mixtures for concrete facades
混凝土外墙的传统和再生混凝土骨料 (RCA) 混合物的优化
- 批准号:
500315-2016 - 财政年份:2016
- 资助金额:
$ 1.76万 - 项目类别:
Engage Grants Program
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 1.76万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 1.76万 - 项目类别:
EU-Funded
University of West London and Turing Intelligence Technology Limited KTP (23-24 R3)
西伦敦大学与图灵智能科技有限公司KTP (23-24 R3)
- 批准号:
10082602 - 财政年份:2024
- 资助金额:
$ 1.76万 - 项目类别:
Knowledge Transfer Network
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 1.76万 - 项目类别:
Discovery Projects
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
- 批准号:
DP240100506 - 财政年份:2024
- 资助金额:
$ 1.76万 - 项目类别:
Discovery Projects
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
- 批准号:
EP/Y028872/1 - 财政年份:2024
- 资助金额:
$ 1.76万 - 项目类别:
Research Grant
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 1.76万 - 项目类别:
Fellowship
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 1.76万 - 项目类别:
Continuing Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 1.76万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 1.76万 - 项目类别:
Standard Grant














{{item.name}}会员




