Probabilistic Inference And Deep Learning
概率推理和深度学习
基本信息
- 批准号:CRC-2017-00265
- 负责人:
- 金额:$ 8.74万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Canada Research Chairs
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While neural networks have led to dramatic performance gains in image and language understanding, robotics, and medicine, the algorithms are still sometimes miscalibrated, opaque, and difficult to configure. The proposed research aims to improve the robustness, interpretability, and configurability of neural networks by borrowing techniques from Bayesian statistics and information geometry. The result will be networks which are robust to adversarial inputs and which know what they don¿t know. This research will also lead to techniques for automatically designing neural network architectures.
虽然神经网络在图像和语言理解、机器人技术和医学方面取得了巨大的性能进步,但这些算法有时仍然存在校准错误、不透明和难以配置的问题。该研究旨在通过借鉴贝叶斯统计和信息几何的技术来提高神经网络的鲁棒性、可解释性和可配置性。结果将是网络对敌对输入具有鲁棒性,并且知道他们不知道的东西。这项研究也将导致自动设计神经网络架构的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grosse, Roger其他文献
Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks
- DOI:
10.1145/2001269.2001295 - 发表时间:
2011-10-01 - 期刊:
- 影响因子:22.7
- 作者:
Lee, Honglak;Grosse, Roger;Ng, Andrew Y. - 通讯作者:
Ng, Andrew Y.
Grosse, Roger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grosse, Roger', 18)}}的其他基金
Probabilistic Inference and Deep Learning
概率推理和深度学习
- 批准号:
CRC-2017-00265 - 财政年份:2022
- 资助金额:
$ 8.74万 - 项目类别:
Canada Research Chairs
Evaluating and Improving Deep Neural Networks
评估和改进深度神经网络
- 批准号:
RGPIN-2017-06050 - 财政年份:2022
- 资助金额:
$ 8.74万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning and AI Alignment
深度学习和人工智能的结合
- 批准号:
CRC-2021-00500 - 财政年份:2022
- 资助金额:
$ 8.74万 - 项目类别:
Canada Research Chairs
Evaluating and Improving Deep Neural Networks
评估和改进深度神经网络
- 批准号:
RGPIN-2017-06050 - 财政年份:2021
- 资助金额:
$ 8.74万 - 项目类别:
Discovery Grants Program - Individual
Evaluating and Improving Deep Neural Networks
评估和改进深度神经网络
- 批准号:
RGPIN-2017-06050 - 财政年份:2020
- 资助金额:
$ 8.74万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Inference and Deep Learning
概率推理和深度学习
- 批准号:
CRC-2017-00265 - 财政年份:2020
- 资助金额:
$ 8.74万 - 项目类别:
Canada Research Chairs
Evaluating and Improving Deep Neural Networks
评估和改进深度神经网络
- 批准号:
RGPIN-2017-06050 - 财政年份:2019
- 资助金额:
$ 8.74万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Inference and Deep Learning
概率推理和深度学习
- 批准号:
CRC-2017-00265 - 财政年份:2019
- 资助金额:
$ 8.74万 - 项目类别:
Canada Research Chairs
Probabilistic Inference and Deep Learning
概率推理和深度学习
- 批准号:
CRC-2017-00265 - 财政年份:2018
- 资助金额:
$ 8.74万 - 项目类别:
Canada Research Chairs
Evaluating and Improving Deep Neural Networks
评估和改进深度神经网络
- 批准号:
RGPIN-2017-06050 - 财政年份:2018
- 资助金额:
$ 8.74万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
CompCog: Deep causal inference grounds the perception of cognitive objects in speech
CompCog:深层因果推理为语音中认知对象的感知奠定了基础
- 批准号:
2240349 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
NCS-FO: Brain-Informed Goal-Oriented and Bidirectional Deep Emotion Inference
NCS-FO:大脑知情的目标导向双向深度情感推理
- 批准号:
2318984 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312502 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
CRII: III: Harnessing Deep-Learning to Simplify Biological Inference from Complex Imaging Data
CRII:III:利用深度学习简化复杂成像数据的生物推断
- 批准号:
2246064 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Applying Causal Inference and Deep Learning to Improve the Accuracy and Equity of Pulmonary Function Test Interpretation.
应用因果推理和深度学习提高肺功能测试解释的准确性和公平性。
- 批准号:
10749527 - 财政年份:2023
- 资助金额:
$ 8.74万 - 项目类别:
ERI: An Adaptive Incremental Deep Learning Architecture for Real-Time Inference of RF Signals in Dynamic Spectrum Sharing Environments
ERI:一种自适应增量深度学习架构,用于动态频谱共享环境中射频信号的实时推理
- 批准号:
2138898 - 财政年份:2022
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Geometric deep learning for likelihood-free statistical inference
用于无似然统计推断的几何深度学习
- 批准号:
2720990 - 财政年份:2022
- 资助金额:
$ 8.74万 - 项目类别:
Studentship
Probabilistic Inference and Deep Learning
概率推理和深度学习
- 批准号:
CRC-2017-00265 - 财政年份:2022
- 资助金额:
$ 8.74万 - 项目类别:
Canada Research Chairs
CIF: III: Medium: MoDL+: Analytical Foundations for Deep Learning and Inference over Graphs
CIF:III:媒介:MoDL:深度学习和图推理的分析基础
- 批准号:
2212318 - 财政年份:2022
- 资助金额:
$ 8.74万 - 项目类别:
Continuing Grant