Deep Learning and AI Alignment
深度学习和人工智能的结合
基本信息
- 批准号:CRC-2021-00500
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Canada Research Chairs
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Neural networks have become the core machine learning technology across many areas of Artificial Intelligence, due to their ability to automatically learn high-level feature representations. While networks have achieved impressive performance in terms of the accuracy of their predictions, there remain several obstacles: neural networks are often overconfident about their predictions, sensitive to shifts in the data distribution, or prone to exploit spurious correlations. Furthermore, neural net architectures are largely based on pattern recognition, whereas extending them to more difficult problems will require more deliberative reasoning.Much of Dr. Grosse's research has focused on understanding neural net training dynamics - theways in which what happens during training affects the final outcome. His program is unique in that while most such work has focused on the pattern recognition setting, he will extend such analyses to cases where the network performs sophisticated reasoning or optimization at test time by meeting the following objectives: 1) extending prior investigations of neural net training dynamics to settings where the architectures perform more sophisticated planning, reasoning, or optimization, and where the training regime may involve multiple neural nets trained to different objectives2) understanding how and why these settings can lead to different patterns of generalization compared with more traditional neural nets3) understanding the reasons for a neural net's predictions by determining how the predictions would have changed if the network were trained on slightly different data; and 4) developing algorithms for training a neural net to produce not only an answer, but also an independently checkable justification for that answer. Ultimately, this program will lead to greater interpretability of the network's predictions, as well as reducing the reliance on spurious correlations in the data.
神经网络已经成为人工智能许多领域的核心机器学习技术,因为它们能够自动学习高级特征表示。虽然神经网络在预测的准确性方面取得了令人印象深刻的表现,但仍然存在一些障碍:神经网络通常对其预测过于自信,对数据分布的变化敏感,或者倾向于利用虚假的相关性。此外,神经网络架构在很大程度上是基于模式识别的,而将其扩展到更困难的问题将需要更多的深思熟虑的推理。格罗斯博士的大部分研究都集中在理解神经网络训练动力学--训练过程中发生的事情影响最终结果的方式。他的计划是独一无二的,因为虽然大多数此类工作都集中在模式识别设置上,但他将这些分析扩展到网络通过满足以下目标在测试时执行复杂推理或优化的情况:1)将神经网络训练动态的现有研究扩展到架构执行更复杂的规划、推理或优化的设置,以及训练机制可能涉及针对不同目标训练的多个神经网络2)理解这些设置如何以及为什么会导致与更传统的神经网络相比不同的泛化模式3)了解神经网络预测的原因,通过确定如果网络被稍微训练,预测将如何改变不同的数据;以及4)开发用于训练神经网络的算法,以不仅产生答案,而且产生该答案的可独立检查的理由。最终,该计划将提高网络预测的可解释性,并减少对数据中虚假相关性的依赖。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grosse, Roger其他文献
Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks
- DOI:
10.1145/2001269.2001295 - 发表时间:
2011-10-01 - 期刊:
- 影响因子:22.7
- 作者:
Lee, Honglak;Grosse, Roger;Ng, Andrew Y. - 通讯作者:
Ng, Andrew Y.
Grosse, Roger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grosse, Roger', 18)}}的其他基金
Probabilistic Inference and Deep Learning
概率推理和深度学习
- 批准号:
CRC-2017-00265 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Evaluating and Improving Deep Neural Networks
评估和改进深度神经网络
- 批准号:
RGPIN-2017-06050 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Evaluating and Improving Deep Neural Networks
评估和改进深度神经网络
- 批准号:
RGPIN-2017-06050 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Inference And Deep Learning
概率推理和深度学习
- 批准号:
CRC-2017-00265 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Evaluating and Improving Deep Neural Networks
评估和改进深度神经网络
- 批准号:
RGPIN-2017-06050 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Inference and Deep Learning
概率推理和深度学习
- 批准号:
CRC-2017-00265 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Evaluating and Improving Deep Neural Networks
评估和改进深度神经网络
- 批准号:
RGPIN-2017-06050 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic Inference and Deep Learning
概率推理和深度学习
- 批准号:
CRC-2017-00265 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Probabilistic Inference and Deep Learning
概率推理和深度学习
- 批准号:
CRC-2017-00265 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Canada Research Chairs
Evaluating and Improving Deep Neural Networks
评估和改进深度神经网络
- 批准号:
RGPIN-2017-06050 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
深層学習(Deep learning)による骨転移検出AIモデルの開発と臨床応用
深度学习骨转移检测AI模型开发及临床应用
- 批准号:
24K18754 - 财政年份:2024
- 资助金额:
$ 3.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
- 批准号:
2339904 - 财政年份:2024
- 资助金额:
$ 3.64万 - 项目类别:
Continuing Grant
Enhancing the Accuracy and Interpretability of Global Flood Models with AI: Development of a Physics-Guided Deep Learning Model Considering River Network Topology
利用人工智能提高全球洪水模型的准确性和可解释性:考虑河网拓扑的物理引导深度学习模型的开发
- 批准号:
24K17353 - 财政年份:2024
- 资助金额:
$ 3.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Quin AI: Quin Audience Engine Offering Optimisation by Deep Learning
Quin AI:Quin 受众引擎通过深度学习提供优化
- 批准号:
10071276 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Collaborative R&D
Co-creation between content-generating AI and humans based on deep learning
基于深度学习的内容生成人工智能与人类的共同创造
- 批准号:
23K04201 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Zeroshot learning of real-world AI by fusing large deep learning models and 3D virtual world
通过融合大型深度学习模型和 3D 虚拟世界,实现现实世界人工智能的零射击学习
- 批准号:
23H03426 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Deep-learning-based surrogate model for time-history analysis towards development of AI-driven Earthquake Engineering
基于深度学习的时程分析代理模型,以推动人工智能驱动的地震工程的发展
- 批准号:
23K13437 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a Structural Optimization Method for the Midship Section of a Ship with Deep Reinforcement Learning AI incorporating Principal Dimensions as Design Variables
利用深度强化学习人工智能(将主尺寸作为设计变量)开发船舶中段结构优化方法
- 批准号:
23K13508 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Automated conservation with deep learning AI for camera-trap identification of species and individuals (Ref: 4659)
通过深度学习 AI 进行自动保护,用于物种和个体的相机陷阱识别(参考号:4659)
- 批准号:
2859442 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Studentship
AIM-AI: an Actionable, Integrated and Multiscale genetic map of Alzheimer's disease via deep learning
AIM-AI:通过深度学习绘制阿尔茨海默病的可操作、集成和多尺度遗传图谱
- 批准号:
10668829 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别: