Understanding kidney physiology: Modeling and analysis

了解肾脏生理学:建模和分析

基本信息

  • 批准号:
    RGPIN-2019-03916
  • 负责人:
  • 金额:
    $ 6.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

When the kidneys are deprived of oxygen, hypoxia (low blood oxygen) can occur and chronic kidney diseases may follow. Despite intense research, the mechanisms that underlie the pathways to renal hypoxia remain poorly understood. That difficulty may be due to the complex interplay among the millions of renal tubules (nephrons) and vessels that forms the basis for the integrative function of the kidney but that remains to be fully characterized.    Building on my team's expertise in developing computational models of the rat kidney that represent the complex interactions, we will extend those models and conduct the following research activities:   (1) To develop a detailed computational model of integrative rat kidney function, and to use that model to examine key determinants of kidney function and medullary oxygenation. Simulations of gene knockout and nephron loss will be conducted to determine: What are the necessary nephron structures and functions that must be preserved or inhibited to increase oxygen balance in the vulnerable parts of the kidney, while maintaining overall kidney functions?   (2) To simulate and gain insights into the development and impacts of renal hypoxia. Model simulations will be conducted to investigate factors that impact kidney tissue oxygen tension, particularly in the vulnerable outer medulla, including shift in Na+ transport to the more distal and less efficient nephron segments, elevated oxidative stress, hyperfiltration, and tubular hypertrophy. We will simulate and investigate the effectiveness of differing maneuvers and answer questions: How can one increase sodium excretion (motivated by hypertension treatment) while limiting effects on other kidney functions and preserve oxygenation? To what extent do blood pressure reduction maneuvers increase kidney oxygen tension and protect the organ?   (3) To develop and apply computational models to analyze sex differences in kidney function. Recent experimental studies have revealed surprising and important sex-based differences along the nephron of the rodent kidney. To analyze that data, we will develop sex-specific computational models and conduct simulations to better understand sex differences in kidney function. In particular, we will study the differences in which male and female rats handle sodium and water, the key determinants of blood pressure set point.    Our research program is novel in its use of computational modeling and simulations to study kidney function. The proposed computational models are unique in that they incorporate renal transport and metabolic processes at different biological scales, and that they represent sex differences in kidney function.    The long-term goals of our research program are to seek insights into the key determinants of kidney function, and into how mutations in renal transporters affect kidney function and electrolyte homeostasis. Trainees supported by this award would have learned renal physiology, computational modeling, and numerical methods.
When the kidneys are deprived of oxygen, hypoxia (low blood oxygen) can occur and chronic kidney diseases may follow. Despite intense research, the mechanisms that underlie the pathways to renal hypoxia remain poorly understood. That difficulty may be due to the complex interplay among the millions of renal tubules (nephrons) and vessels that forms the basis for the integrative function of the kidney but that remains to be fully characterized.    Building on my team's expertise in developing computational models of the rat kidney that represent the complex interactions, we will extend those models and conduct the following research activities:   (1) To develop a detailed computational model of integrative rat kidney function, and to use that model to examine key determinants of kidney function and medullary oxygenation. Simulations of gene knockout and nephron loss will be conducted to determine: What are the necessary nephron structures and functions that must be preserved or inhibited to increase oxygen balance in the vulnerable parts of the kidney, while maintaining overall kidney functions?   (2) To simulate and gain insights into the development and impacts of renal hypoxia. Model simulations will be conducted to investigate factors that impact kidney tissue oxygen tension, particularly in the vulnerable outer medulla, including shift in Na+ transport to the more distal and less efficient nephron segments, elevated oxidative stress, hyperfiltration, and tubular hypertrophy. We will simulate and investigate the effectiveness of differing maneuvers and answer questions: How can one increase sodium excretion (motivated by hypertension treatment) while limiting effects on other kidney functions and preserve oxygenation? To what extent do blood pressure reduction maneuvers increase kidney oxygen tension and protect the organ?   (3) To develop and apply computational models to analyze sex differences in kidney function. Recent experimental studies have revealed surprising and important sex-based differences along the nephron of the rodent kidney. To analyze that data, we will develop sex-specific computational models and conduct simulations to better understand sex differences in kidney function. In particular, we will study the differences in which male and female rats handle sodium and water, the key determinants of blood pressure set point.    Our research program is novel in its use of computational modeling and simulations to study kidney function. The proposed computational models are unique in that they incorporate renal transport and metabolic processes at different biological scales, and that they represent sex differences in kidney function.    The long-term goals of our research program are to seek insights into the key determinants of kidney function, and into how mutations in renal transporters affect kidney function and electrolyte homeostasis. Trainees supported by this award would have learned renal physiology, computational modeling, and numerical methods.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Layton, Anita其他文献

Layton, Anita的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Layton, Anita', 18)}}的其他基金

Understanding kidney physiology: Modeling and analysis
了解肾脏生理学:建模和分析
  • 批准号:
    RGPIN-2019-03916
  • 财政年份:
    2022
  • 资助金额:
    $ 6.11万
  • 项目类别:
    Discovery Grants Program - Individual
Learning from incomplete data by combining physiological knowledge and machine learning
结合生理知识和机器学习从不完整数据中学习
  • 批准号:
    562032-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 6.11万
  • 项目类别:
    Alliance Grants
Canada 150 Research Chair in Mathematical Biology & Medicine
加拿大 150 数学生物学研究主席
  • 批准号:
    C150-2017-00010
  • 财政年份:
    2020
  • 资助金额:
    $ 6.11万
  • 项目类别:
    Canada 150 Research Chairs
Understanding kidney physiology: Modeling and analysis
了解肾脏生理学:建模和分析
  • 批准号:
    RGPIN-2019-03916
  • 财政年份:
    2020
  • 资助金额:
    $ 6.11万
  • 项目类别:
    Discovery Grants Program - Individual
Canada 150 Research Chair in Mathematical Biology & Medicine
加拿大 150 数学生物学研究主席
  • 批准号:
    C150-2017-00010
  • 财政年份:
    2019
  • 资助金额:
    $ 6.11万
  • 项目类别:
    Canada 150 Research Chairs
Understanding kidney physiology: Modeling and analysis
了解肾脏生理学:建模和分析
  • 批准号:
    RGPIN-2019-03916
  • 财政年份:
    2019
  • 资助金额:
    $ 6.11万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

DACH1对糖尿病肾病足细胞脂质代谢的调控作用和机制研究
  • 批准号:
    82370719
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
BRPF1 m6A修饰异常通过重塑BCAT1超级增强子介导Setd2缺陷型肾癌支链氨基酸代谢成瘾的机制研究
  • 批准号:
    82372724
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
  • 批准号:
    81300605
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
生物标志物NGAL和KIM-1分子在急性肾损伤中的作用机制研究及标志物联合检测对早期诊断AKI的作用
  • 批准号:
    81101308
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
肠上皮内γδT细胞诱导抗原特异性Treg的体内机制及其对肾移植慢性排斥的抑制作用研究
  • 批准号:
    81170693
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
血管内皮生长抑制因子对肾透明细胞癌微血管形成和肿瘤生长的影响
  • 批准号:
    81072088
  • 批准年份:
    2010
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
钙激活的大电流钾离子通道β1亚基影响慢性肾脏病进展的机制探讨
  • 批准号:
    81070587
  • 批准年份:
    2010
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
缺氧预处理调节骨髓源性间充质干细胞归巢能力对兔急性缺血性肾损伤修复的影响
  • 批准号:
    81000307
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
肾损伤分子-1介导肾小管上皮细胞吞噬作用的病生理意义及机制研究
  • 批准号:
    81070549
  • 批准年份:
    2010
  • 资助金额:
    37.0 万元
  • 项目类别:
    面上项目
HIF-1α和2α在肾脏晚期缺血预适应中的作用及相关功能基因的研究
  • 批准号:
    30871176
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding the immune response changes to clinical interventions for Epstein-Barr virus infection prior to lymphoma development in children after organ transplants (UNEARTH)
了解器官移植后儿童淋巴瘤发展之前针对 Epstein-Barr 病毒感染的临床干预的免疫反应变化(UNEARTH)
  • 批准号:
    10755205
  • 财政年份:
    2023
  • 资助金额:
    $ 6.11万
  • 项目类别:
Understanding the Pathophysiology of Type 2 Diabetes in Navajo Youth
了解纳瓦霍青年 2 型糖尿病的病理生理学
  • 批准号:
    10583405
  • 财政年份:
    2023
  • 资助金额:
    $ 6.11万
  • 项目类别:
Understanding the physiology and pathophysiology of kidney-derived vasopressin
了解肾源性加压素的生理学和病理生理学
  • 批准号:
    10644062
  • 财政年份:
    2023
  • 资助金额:
    $ 6.11万
  • 项目类别:
Understanding and Targeting the Pathophysiology of Youth-onset Type 2 Diabetes- NYU Clinical Center
了解并针对青年发病 2 型糖尿病的病理生理学 - 纽约大学临床中心
  • 批准号:
    10584108
  • 财政年份:
    2023
  • 资助金额:
    $ 6.11万
  • 项目类别:
Understanding and Targeting the Pathophysiology of Youth-onset Type 2 Diabetes - Biostatistics Research Center
了解并针对青年发病 2 型糖尿病的病理生理学 - 生物统计学研究中心
  • 批准号:
    10583114
  • 财政年份:
    2023
  • 资助金额:
    $ 6.11万
  • 项目类别:
Understanding and Targeting the Pathophysiology of Youth-onset Type2 Diabetes
了解并针对青年发病 2 型糖尿病的病理生理学
  • 批准号:
    10583413
  • 财政年份:
    2023
  • 资助金额:
    $ 6.11万
  • 项目类别:
Stable Isotope Approaches to the Understanding of Potassium Homeostasis
稳定同位素方法了解钾稳态
  • 批准号:
    10431555
  • 财政年份:
    2022
  • 资助金额:
    $ 6.11万
  • 项目类别:
Understanding kidney physiology: Modeling and analysis
了解肾脏生理学:建模和分析
  • 批准号:
    RGPIN-2019-03916
  • 财政年份:
    2022
  • 资助金额:
    $ 6.11万
  • 项目类别:
    Discovery Grants Program - Individual
Stable Isotope Approaches to the Understanding of Potassium Homeostasis
稳定同位素方法了解钾稳态
  • 批准号:
    10592405
  • 财政年份:
    2022
  • 资助金额:
    $ 6.11万
  • 项目类别:
ADPKD: Understanding immunosuppression mechanisms and discovering treatment
ADPKD:了解免疫抑制机制并发现治疗方法
  • 批准号:
    10274630
  • 财政年份:
    2021
  • 资助金额:
    $ 6.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了