Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
基本信息
- 批准号:RGPIN-2019-03923
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The focus of my research program concerns the part of functional analysis that encompasses the theory of bounded linear operators acting on Hilbert spaces, C*-algebras and von Neumann algebras, and abstract operator systems. These particular fields are very active areas of research that engage a significant number of high-quality mathematicians worldwide. Indeed, these areas also represent branches of mathematics in which Canada is known internationally to be particularly strong. The long-term objectives of the present research proposal are to make advances in operator algebra theory overall and, through those advances, to make novel, useful contributions of the theory of operator systems and operator algebras to related fields such as single-operator theory, quantum information theory, free convexity (also known as operator convexity, matrix convexity, and noncommutative convexity), and noncommutative function theory. As part of this program, I aim to strengthen the interactions between these seemingly diverse subfields, and to engage highly qualified personnel in those aspects of this research that have the potential to develop a knowledge base that has sustained value beyond the scope of the presently proposed work. In the near term, I am proposing to continue the trajectory of the research undertaken during my current NSERC Discovery Grant, with a particular emphasis on achieving the following objectives: (i) understanding the nature of the matrix-state spaces of operator system tensor products; (ii) advancing free topology, and determining a framework for free measure theory and integral representations of operator-convex functions on free convex sets; (iii) the analysis of the spectra of quantum channels on the fermion algebra; (iv) developing new measures of quantum noise. Expected outcomes of this research include: (a) the training of new personnel equipped with a powerful skill set in mathematics, with a particular emphasis on developing the mathematical talents of women, minority peoples, or people with disabilities; and (b) the advancement of knowledge in a branch of mathematics that is studied and applied worldwide by mathematicians, theoretical physicists, and computer scientists.
我研究项目的重点是泛函分析的一部分,其中包括作用于Hilbert空间、C*-代数和冯诺伊曼代数以及抽象算子系统的有界线性算子理论。这些特定的领域是非常活跃的研究领域,吸引了世界各地大量的高素质数学家。事实上,这些领域也代表了加拿大在国际上特别强大的数学分支。本研究计划的长期目标是使算子代数理论整体上取得进展,并通过这些进展,使算子系统和算子代数理论对相关领域,如单算子理论,量子信息理论,自由凸性(也称为算子凸性,矩阵凸性和非交换凸性)和非交换函数理论做出新的,有用的贡献。作为该计划的一部分,我的目标是加强这些看似不同的子领域之间的互动,并在本研究的那些方面聘请高素质的人员,这些人员有可能开发出一个知识库,该知识库具有超出目前拟议工作范围的持续价值。在短期内,我建议继续在我目前的NSERC发现资助期间进行的研究的轨迹,特别强调实现以下目标:(i)理解算子系统张量积的矩阵状态空间的性质;(ii)推进自由拓扑,并确定自由测度理论的框架和自由凸集上算子凸函数的积分表示;(iii)在费米子代数上分析量子通道的光谱;(iv)发展量子噪音的新量度。这项研究的预期成果包括:(a)培训具备强大数学技能的新人员,特别重视发展妇女、少数民族或残疾人的数学才能;(B)促进数学分支的知识,世界各地的数学家、理论物理学家和计算机科学家都在研究和应用这一分支。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farenick, Douglas其他文献
Farenick, Douglas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farenick, Douglas', 18)}}的其他基金
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2019-03923 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Science Camps for Saskatchewan Indigenous Youth
萨斯喀彻温省土著青年科学营
- 批准号:
567334-2021 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
PromoScience
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2019-03923 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Science Camps for Saskatchewan Indigenous Youth
萨斯喀彻温省土著青年科学营
- 批准号:
556969-2020 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
PromoScience
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2019-03923 - 财政年份:2019
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2014-05708 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2014-05708 - 财政年份:2017
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2014-05708 - 财政年份:2016
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2014-05708 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2014-05708 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
- 批准号:
2309778 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Quantitative Operator K-theory and Applications
定量算子K理论及应用
- 批准号:
2247313 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
- 批准号:
2309777 - 财政年份:2023
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2019-03923 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
International Workshop on Operator Theory and Its Applications
算子理论及其应用国际研讨会
- 批准号:
2055270 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
IWOTA Lancaster 2020: International Workshop on Operator Theory and its Applications to be held at Lancaster from 17th to 21st August 2020
IWOTA Lancaster 2020:算子理论及其应用国际研讨会将于 2020 年 8 月 17 日至 21 日在兰卡斯特举行
- 批准号:
EP/T007524/1 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Research Grant
Operator Theory and Harmonic Analysis with Applications to Physics
算子理论和调和分析及其在物理学中的应用
- 批准号:
553881-2020 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
- 批准号:
RGPIN-2019-03923 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
International Workshop on Operator Theory and Applications 2020
2020年算子理论与应用国际研讨会
- 批准号:
1953940 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant
CBMS Conference: K-theory of Operator Algebras and Its Applications to Geometry and Topology
CBMS 会议:算子代数的 K 理论及其在几何和拓扑中的应用
- 批准号:
1933327 - 财政年份:2020
- 资助金额:
$ 1.24万 - 项目类别:
Standard Grant