Principled Robotic Decision Making via Reachability
通过可达性进行有原则的机器人决策
基本信息
- 批准号:RGPIN-2019-04605
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Principled Robotic Decision Making via Reachability Many autonomous systems, such as unmanned aerial vehicles and autonomous cars, have potential to make great positive impact in many aspects of our lives. However, currently robotic systems tend to operate in controlled environments, often in the absence of other agents. To realize their potential, robotic systems still need to become both safer so that they do not harm humans and other robots, and smarter so that they and humans can achieve better mutual understanding. This can be done through more principled robotic decision making algorithms that account for both domain knowledge and real-world data. To make robots safer, we use reachability analysis, a safety verification method that involves computing the reachable set based on the dynamics, or possible behaviours, of a robotic system. The reachable set quantifies the set of states or configurations of a robotic system from which a target set of states can be reached. This target set of states may represent a set of goal states which are desirable, or a set of dangerous states which are undesirable. Reachability analysis has previously been successfully applied to small scale robotic systems with general nonlinear dynamics, under the influence of process noise, disturbances, and other agents in the environment. Since it accounts for key prior properties of robotic systems such as dynamics and control action constraints, reachability analysis provides a principled decision making framework that my research program aims to advance. To make robots smarter, machine learning has been used extensively; its data-driven nature has the potential to allow robots to sense their environment and to perform complex tasks. However, currently a large amount of data is needed for a robotic system to learn to perform a task, and the learned behaviour transfers poorly across different environments and tasks. Reachability analysis has the potential to help overcome these challenges by summarizing key properties of robotic systems into a form that is compatible with machine learning algorithms. Conversely, machine learning also has the potential to address challenges in safety verification by inferring human intent. In this way, reachability analysis is a bridge that connects traditional principles of robotic decision making to modern data-driven techniques. My research program aims to develop practical, principled robotic decision making algorithms based on reachability analysis. At a high level, the objectives are two-fold: 1. To make robots safer by addressing the computational challenges in reachability analysis and making reachability analysis more practical through its incorporation with realistic perception systems 2. To make robots smarter and more understandable by utilizing reachability to augment machine learning algorithms, and by incorporating insights from machine learning into reachability in tasks such as human-robot interactions
许多自主系统,如无人机和自动汽车,有可能在我们生活的许多方面产生巨大的积极影响。然而,目前的机器人系统往往在受控环境中运行,通常在没有其他代理的情况下。为了实现它们的潜力,机器人系统仍然需要变得更安全,这样它们就不会伤害人类和其他机器人,并且更聪明,这样它们和人类就可以实现更好的相互理解。这可以通过更有原则的机器人决策算法来实现,这些算法同时考虑了领域知识和真实世界的数据。为了使机器人更安全,我们使用可达性分析,这是一种安全验证方法,涉及基于机器人系统的动态或可能行为计算可达集。可达集合量化机器人系统的状态或配置的集合,从该集合可以达到目标状态集合。该目标状态集合可以表示期望的目标状态集合,或者不期望的危险状态集合。可达性分析以前已成功地应用于小规模的机器人系统与一般的非线性动力学,在过程噪声,干扰和其他代理的影响下的环境。由于它占了机器人系统的关键先验属性,如动力学和控制动作约束,可达性分析提供了一个原则性的决策框架,我的研究计划旨在推进。为了让机器人更聪明,机器学习已经得到了广泛的应用;它的数据驱动特性有可能让机器人感知环境并执行复杂的任务。然而,目前机器人系统需要大量的数据来学习执行任务,并且所学习的行为在不同的环境和任务之间的转移很差。可达性分析有可能通过将机器人系统的关键属性总结为与机器学习算法兼容的形式来帮助克服这些挑战。相反,机器学习也有可能通过推断人类意图来解决安全验证中的挑战。通过这种方式,可达性分析是连接传统机器人决策原则和现代数据驱动技术的桥梁。我的研究项目旨在开发基于可达性分析的实用,有原则的机器人决策算法。在高层次上,目标有两个方面:1。通过解决可达性分析中的计算挑战,使机器人更安全,并通过与现实感知系统的结合使可达性分析更加实用2。通过利用可达性增强机器学习算法,并将机器学习的见解融入人机交互等任务的可达性,使机器人更智能,更易于理解
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen, Mo其他文献
Efficient Quantum Error Correction of Dephasing Induced by a Common Fluctuator
对常见波动器引起的移相的有效量子误差校正
- DOI:
10.1103/physrevlett.124.020504 - 发表时间:
2020 - 期刊:
- 影响因子:8.6
- 作者:
Layden, David;Chen, Mo;Cappellaro, Paola - 通讯作者:
Cappellaro, Paola
Tracking the in vivo spatio-temporal patterns of neovascularization via NIR-II fluorescence imaging
通过 NIR-II 荧光成像追踪体内新生血管形成的时空模式
- DOI:
10.1007/s12274-020-2982-7 - 发表时间:
2020-08-10 - 期刊:
- 影响因子:9.9
- 作者:
Chen, Mo;Feng, Sijia;Chen, Jun - 通讯作者:
Chen, Jun
The moral dark side of performance pressure: how and when it affects unethical pro-organizational behavior
- DOI:
10.1080/09585192.2021.1991434 - 发表时间:
2021-10-09 - 期刊:
- 影响因子:5.6
- 作者:
Chen, Mo;Chen, Chao C. - 通讯作者:
Chen, Chao C.
Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit
基于蔡氏电路的非理想有源压控忆阻器中的多个吸引子
- DOI:
10.1016/j.chaos.2015.12.007 - 发表时间:
2016-02 - 期刊:
- 影响因子:7.8
- 作者:
Xu, Quan;Lin, Yi;Bao, Bocheng;Chen, Mo - 通讯作者:
Chen, Mo
Transcranial magnetic stimulation and functional magnet resonance imaging evaluation of adductor spasmodic dysphonia during phonation
- DOI:
10.1016/j.brs.2020.03.003 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:7.7
- 作者:
Chen, Mo;Summers, Rebekah L. S.;Kimberley, Teresa J. - 通讯作者:
Kimberley, Teresa J.
Chen, Mo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chen, Mo', 18)}}的其他基金
Principled Robotic Decision Making via Reachability
通过可达性进行有原则的机器人决策
- 批准号:
RGPIN-2019-04605 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Principled Robotic Decision Making via Reachability
通过可达性进行有原则的机器人决策
- 批准号:
RGPIN-2019-04605 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Principled Robotic Decision Making via Reachability
通过可达性进行有原则的机器人决策
- 批准号:
DGECR-2019-00086 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Launch Supplement
Principled Robotic Decision Making via Reachability
通过可达性进行有原则的机器人决策
- 批准号:
RGPIN-2019-04605 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Linked Hybrid Systems Models for Brain-Machine Interfaces
脑机接口的链接混合系统模型
- 批准号:
438357-2013 - 财政年份:2015
- 资助金额:
$ 2.04万 - 项目类别:
Postgraduate Scholarships - Doctoral
Linked Hybrid Systems Models for Brain-Machine Interfaces
脑机接口的链接混合系统模型
- 批准号:
438357-2013 - 财政年份:2014
- 资助金额:
$ 2.04万 - 项目类别:
Postgraduate Scholarships - Doctoral
Linked Hybrid Systems Models for Brain-Machine Interfaces
脑机接口的链接混合系统模型
- 批准号:
438357-2013 - 财政年份:2013
- 资助金额:
$ 2.04万 - 项目类别:
Postgraduate Scholarships - Doctoral
Guaranteeing Safety in Systems with Discretized State Space and Time
确保具有离散状态空间和时间的系统的安全性
- 批准号:
410124-2011 - 财政年份:2012
- 资助金额:
$ 2.04万 - 项目类别:
Postgraduate Scholarships - Master's
Guaranteeing Safety in Systems with Discretized State Space and Time
确保具有离散状态空间和时间的系统的安全性
- 批准号:
410124-2011 - 财政年份:2011
- 资助金额:
$ 2.04万 - 项目类别:
Postgraduate Scholarships - Master's
Safe navigation in a smart wheelchair: observability conditions for effective automation
智能轮椅上的安全导航:有效自动化的可观察性条件
- 批准号:
399989-2010 - 财政年份:2010
- 资助金额:
$ 2.04万 - 项目类别:
University Undergraduate Student Research Awards
相似国自然基金
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Phase 2 - Effective and Integrated Chemical Free Robotic Milking
第 2 阶段 - 有效且集成的无化学品机器人挤奶
- 批准号:
10093094 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative R&D
CAREER: Designing Autonomous Battery-Free Robotic Sensors
职业:设计自主无电池机器人传感器
- 批准号:
2338736 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
Revolutionary Rotors: A Robotic Flywheel Assembly Line
革命性转子:机器人飞轮装配线
- 批准号:
10098069 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative R&D
Dynamically Adaptive Prosthetic Limbs Enabled by Autonomous Soft Robotic Interfaces
由自主软机器人接口实现的动态自适应假肢
- 批准号:
10095028 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative R&D
RII Track-4: NSF: Enabling Synergistic Multi-Robot Cooperation for Mobile Manipulation Beyond Individual Robotic Capabilities
RII Track-4:NSF:实现协同多机器人合作,实现超越单个机器人能力的移动操作
- 批准号:
2327313 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
RII Track-4:NSF:Planetary Robotic Construction on the Moon and Mars Using 3D Printed Waterless Concrete
RII Track-4:NSF:使用 3D 打印无水混凝土在月球和火星上进行行星机器人施工
- 批准号:
2327469 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Researching the feasibility of enhancing the productivity of daffodil harvesting through the use of a daffodil collection robotic platform (Daffy)
研究利用水仙花采集机器人平台(Daffy)提高水仙花采收生产力的可行性
- 批准号:
10107691 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Launchpad
MRI-guided Robotic-assisted Neurosurgery at 0.55T
0.55T MRI 引导机器人辅助神经外科手术
- 批准号:
2904728 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Studentship
NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
- 批准号:
2422640 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Collaborative Research: Interaction-aware Planning and Control for Robotic Navigation in the Crowd
协作研究:人群中机器人导航的交互感知规划和控制
- 批准号:
2423131 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant