Novel optimization methods for cancer screening and treatment
癌症筛查和治疗的新优化方法
基本信息
- 批准号:RGPIN-2019-05588
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Given the recent trends in evidence-based and personalized decision making, powerful data-driven modeling approaches are needed to obtain personalized optimal intervention plans for practical engineering problems. We propose developing novel engineering tools based on stochastic dynamic programming and integer programming to address practical decision making problems. While proposed research will be applied to cancer screening and treatment, the main focus is on developing engineering methodology. We will investigate the applications of large-scale stochastic dynamic programming and integer programming methods in cancer screening and treatment. These application areas are rich with operational problems that potentially provide valuable feedback on limitations of the proposed methodologies, thus opening new avenues in these methodological domains. In particular, sequential decision making problems will be formulated as stochastic dynamic programming models (e.g., partially observable Markov decision process models), and deriving structural properties of the optimal solutions, and exploiting those properties to find efficient solution methods for these models will be explored. Moreover, various decomposition schemes will be proposed for the large-scale integer programming formulations encountered in these application problems. Theme 1 of the program will focus on developing novel methods that can overcome modeling and algorithmic challenges in stochastic dynamic programming. We will investigate personalized cancer screening and treatment problems, and test the viability of the proposed solution methods. Using clinical data from the literature and our collaborators, we will apply these methods to determine optimal policies for cancer screening and treatment. The proposed methodology may help develop insights to improve and personalize cancer screening and treatment practices, yielding a significant contribution as cancer is a leading cause of death in Canada. The proposed approach will also improve the engineering knowledge on stochastic dynamic programming for other engineering applications. Theme 2 of the program will explore large-scale discrete optimization models that arise in radiation therapy treatment planning. Specifically, we will investigate fluence map optimization and decomposition in intensity modulated radiation therapy and sector duration optimization in radiosurgery, which lack efficient solution methods for practical instances. We will develop novel optimization models for these problems and explore the effectiveness of new solution methodologies such as decision diagrams. The results will provide valuable planning, scheduling and operational tools for decision makers. The proposed research will be extended to consider more general settings.
鉴于基于证据和个性化决策的最新趋势,需要强大的数据驱动建模方法来获得针对实际工程问题的个性化最佳干预方案。我们建议开发基于随机动态规划和整数规划的新型工程工具来解决实际决策问题。虽然拟议的研究将应用于癌症筛查和治疗,但主要重点是开发工程方法。我们将研究大规模随机动态规划和整数规划方法在癌症筛查和治疗中的应用。这些应用领域充满了操作问题,这些问题可能对所建议的方法的局限性提供有价值的反馈,从而在这些方法领域开辟了新的途径。特别是,顺序决策问题将被制定为随机动态规划模型(例如,部分可观察马尔可夫决策过程模型),并将探索最优解的结构性质,并利用这些性质找到这些模型的有效解方法。此外,对于这些应用问题中遇到的大规模整数规划公式,将提出各种分解方案。该计划的主题1将侧重于开发能够克服随机动态规划中建模和算法挑战的新方法。我们将研究个性化的癌症筛查和治疗问题,并测试所提出的解决方法的可行性。利用文献中的临床数据和我们的合作者,我们将应用这些方法来确定癌症筛查和治疗的最佳政策。所提议的方法可能有助于形成见解,以改进和个性化癌症筛查和治疗做法,这将产生重大贡献,因为癌症是加拿大的主要死亡原因。所提出的方法也将为其他工程应用提高随机动态规划的工程知识。该计划的主题2将探讨放射治疗计划中出现的大规模离散优化模型。具体而言,我们将研究调强放射治疗中的影响图优化和分解以及放射外科中的扇区持续时间优化,这些问题缺乏实际实例的有效解决方法。我们将为这些问题开发新的优化模型,并探索新的解决方法(如决策图)的有效性。研究结果将为决策者提供有价值的计划、调度和操作工具。拟议的研究将扩大到考虑更一般的情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cevik, Mucahit其他文献
Analysis of Mammography Screening Policies under Resource Constraints
- DOI:
10.1111/poms.12842 - 发表时间:
2018-05-01 - 期刊:
- 影响因子:5
- 作者:
Cevik, Mucahit;Ayer, Turgay;Sprague, Brian L. - 通讯作者:
Sprague, Brian L.
Scalable grid-based approximation algorithms for partially observable Markov decision processes
- DOI:
10.1002/cpe.6743 - 发表时间:
2021-12-07 - 期刊:
- 影响因子:2
- 作者:
Kavaklioglu, Can;Cevik, Mucahit - 通讯作者:
Cevik, Mucahit
Word-level text highlighting of medical texts for telehealth services
- DOI:
10.1016/j.artmed.2022.102284 - 发表时间:
2022-04-07 - 期刊:
- 影响因子:7.5
- 作者:
Ozyegen, Ozan;Kabe, Devika;Cevik, Mucahit - 通讯作者:
Cevik, Mucahit
Cevik, Mucahit的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cevik, Mucahit', 18)}}的其他基金
Novel optimization methods for cancer screening and treatment
癌症筛查和治疗的新优化方法
- 批准号:
RGPIN-2019-05588 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Novel optimization methods for cancer screening and treatment
癌症筛查和治疗的新优化方法
- 批准号:
RGPIN-2019-05588 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Novel optimization methods for cancer screening and treatment
癌症筛查和治疗的新优化方法
- 批准号:
DGECR-2019-00051 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Launch Supplement
Novel optimization methods for cancer screening and treatment
癌症筛查和治疗的新优化方法
- 批准号:
RGPIN-2019-05588 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
内容分发网络中的P2P分群分发技术研究
- 批准号:61100238
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
天然生物材料的多尺度力学与仿生研究
- 批准号:10732050
- 批准年份:2007
- 资助金额:200.0 万元
- 项目类别:重点项目
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
气动/结构耦合动力学系统目标敏感性分析的快速准确计算方法及优化设计研究
- 批准号:10402036
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Novel approach to identify RNA-bound small molecules in vivo
体内鉴定 RNA 结合小分子的新方法
- 批准号:
10646626 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
- 批准号:
10601968 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Novel Coalescent Approaches for Studying Evolutionary Processes
研究进化过程的新联合方法
- 批准号:
10552480 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Developing a novel treatment of cocaine use disorder using an IND dual inhibitor of Cav3 channel and soluble epoxide hydrolase
使用 Cav3 通道和可溶性环氧化物水解酶的 IND 双重抑制剂开发可卡因使用障碍的新型治疗方法
- 批准号:
10786151 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Absolute binding free energies for virtual screening: A novel implementation of quantum mechanics/molecular mechanics (QM/MM) for FEP that allows substantial sampling and a significant quantum region
用于虚拟筛选的绝对结合自由能:用于 FEP 的量子力学/分子力学 (QM/MM) 的新颖实现,允许大量采样和重要的量子区域
- 批准号:
10759829 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Development of a novel platform for label-free monitoring of CAR-T cell interactions in vivo
开发用于体内 CAR-T 细胞相互作用的无标记监测的新型平台
- 批准号:
10594112 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Developing novel therapeutics for the treatment of mastocytosis
开发治疗肥大细胞增多症的新疗法
- 批准号:
10480408 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Novel Synergistic Antimalarials with Resistance Reversal Function
具有耐药逆转功能的新型协同抗疟药
- 批准号:
10534667 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Novel optimization methods for cancer screening and treatment
癌症筛查和治疗的新优化方法
- 批准号:
RGPIN-2019-05588 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




