Transfer-learning-enabled driver behavior model adaptation towards cognitive autonomous driving

支持迁移学习的驾驶员行为模型适应认知自动驾驶

基本信息

  • 批准号:
    RGPIN-2019-06037
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

There are about 1.2 million road fatalities worldwide every year in which driver behavior or driver error is the most critical causal factor, and it is widely expected that increasing vehicle autonomy will drastically reduce driver error. Governments and industry around the world are recognizing the far-reaching impacts that will eventually be delivered from vehicle automation. A Canadian Senate Committee on Transport and Communications report, published in Jan 2018, gave 16 recommendations to help prepare Canadians for autonomous vehicles, highlighting that Canada must plan better for the impacts of this emerging technology. The coming decades will bring mixed traffic flows, with human-driven and automated vehicles sharing the road. These complex interactions between human drivers and autonomous driving systems (within the same vehicle or among different vehicles) have significant potential to induce human driver errors and/or autonomous driving system decision errors. Such challenges illustrate the emerging need for further enhanced understanding and modeling of human driver behaviors, though considerable efforts have been made in this field in the past few decades. The long-term goal of this research program is to enhance the science and understanding in human driver behaviors towards cognitive autonomous driving, under various driving scenarios, which include normal driving scenarios as well as critical scenarios (or corner cases). Towards achieving this long-term goal, this discovery grant focuses on development and validation of a new transfer learning framework for driver behavior model adaptation. Apart from the available public dataset, new data will be collected using driving simulator and real vehicles, for model training and validation. The proposed research program along with the research outcomes will contribute considerably to the enhanced understanding and modeling of human driver behaviors (and also human behaviors in daily activities), which is also very valuable for the emerging development of cognitive autonomous driving, where the interaction-awareness capacity of autonomous vehicles is needed with surrounding vehicles as well as the operator inside. As an additional valuable outcome, the datasets collected within this program will be published for public research purposes. This research program will have a very valuable impact in automated-driving-oriented companies or startups in Canada. Since Canadian companies will be the primary receptors of these technologies, the research efforts in this program will contribute to advancing future-generation Canadian-made automated driving vehicles with enhanced intelligence and safety. Furthermore, through disseminations, the outcomes of this research program will assist in boosting the public acceptance, offer recommendations related to human driver behaviors for policy makers, and accelerate the penetration of automated driving vehicles in Canada and worldwide.
全球每年约有120万起道路死亡事故,其中驾驶员行为或驾驶员错误是最关键的原因,人们普遍预计,提高车辆自主性将大大减少驾驶员错误。世界各地的政府和行业都认识到汽车自动化最终将带来的深远影响。加拿大参议院交通和通信委员会于2018年1月发布的一份报告提出了16项建议,以帮助加拿大人为自动驾驶汽车做好准备,强调加拿大必须更好地规划这一新兴技术的影响。未来几十年将带来混合交通流,人类驾驶和自动驾驶车辆共享道路。人类驾驶员和自动驾驶系统之间(在同一车辆内或不同车辆之间)的这些复杂交互具有诱发人类驾驶员错误和/或自动驾驶系统决策错误的显著潜力。这些挑战说明了对进一步增强人类驾驶员行为的理解和建模的新兴需求,尽管在过去的几十年中在这一领域已经做出了相当大的努力。 该研究计划的长期目标是在各种驾驶场景下,包括正常驾驶场景以及关键场景(或角落情况),增强人类驾驶员行为对认知自动驾驶的科学和理解。为了实现这一长期目标,这项发现资助的重点是开发和验证一个新的迁移学习框架,用于驾驶员行为模型的适应。除了可用的公共数据集外,还将使用驾驶模拟器和真实的车辆收集新数据,用于模型训练和验证。拟议的研究计划沿着研究成果将大大有助于增强对人类驾驶员行为(以及日常活动中的人类行为)的理解和建模,这对于认知自动驾驶的新兴发展也非常有价值,其中需要自动驾驶车辆与周围车辆以及内部操作员的交互感知能力。作为一个额外的有价值的成果,该计划中收集的数据集将被公布用于公共研究目的。 这项研究计划将对加拿大以自动驾驶为导向的公司或初创公司产生非常有价值的影响。由于加拿大公司将是这些技术的主要接受者,因此该计划的研究工作将有助于推动未来一代加拿大制造的自动驾驶汽车,提高智能和安全性。此外,通过传播,该研究项目的成果将有助于提高公众的接受度,为政策制定者提供与人类驾驶行为相关的建议,并加速自动驾驶汽车在加拿大和全球的渗透。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cao, Dongpu其他文献

Cross-Domain Object Detection for Autonomous Driving: A Stepwise Domain Adaptative YOLO Approach
Surrounding Vehicle Detection Using an FPGA Panoramic Camera and Deep CNNs
使用 FPGA 全景摄像头和深度 CNN 进行周围车辆检测
Driving Style Recognition for Intelligent Vehicle Control and Advanced Driver Assistance: A Survey
Personalized Vehicle Trajectory Prediction Based on Joint Time-Series Modeling for Connected Vehicles
From Software Defined Vehicles to Self-Driving Vehicles: A Report on CPSS-Based Parallel Driving
从软件定义车辆到自动驾驶车辆:基于 CPSS 的并行驾驶报告

Cao, Dongpu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cao, Dongpu', 18)}}的其他基金

Driver Cognition And Automated Driving
驾驶员认知与自动驾驶
  • 批准号:
    CRC-2018-00092
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Canada Research Chairs
Driver Cognition and Automated Driving
驾驶员认知与自动驾驶
  • 批准号:
    CRC-2018-00092
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Canada Research Chairs
Transfer-learning-enabled driver behavior model adaptation towards cognitive autonomous driving
支持迁移学习的驾驶员行为模型适应认知自动驾驶
  • 批准号:
    RGPIN-2019-06037
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Driver Cognition and Automated Driving
驾驶员认知与自动驾驶
  • 批准号:
    CRC-2018-00092
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Canada Research Chairs
Transfer-learning-enabled driver behavior model adaptation towards cognitive autonomous driving
支持迁移学习的驾驶员行为模型适应认知自动驾驶
  • 批准号:
    RGPIN-2019-06037
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Driver Cognition and Automated Driving
驾驶员认知与自动驾驶
  • 批准号:
    CRC-2018-00092
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Canada Research Chairs
Driving-style-oriented human-like automated driving and its verification
面向驾驶风格的仿人自动驾驶及其验证
  • 批准号:
    RGPIN-2018-05348
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Studies on advanced suspension concepts and dynamics for future vehicles
研究未来车辆的先进悬架概念和动力学
  • 批准号:
    373140-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Postdoctoral Fellowships
Studies on advanced suspension concepts and dynamics for future vehicles
研究未来车辆的先进悬架概念和动力学
  • 批准号:
    373140-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Postdoctoral Fellowships

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
  • 批准号:
    31971003
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
  • 批准号:
    61702207
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
  • 批准号:
    10110118
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    EU-Funded
CAREER: Integrated and end-to-end machine learning pipeline for edge-enabled IoT systems: a resource-aware and QoS-aware perspective
职业:边缘物联网系统的集成端到端机器学习管道:资源感知和 QoS 感知的视角
  • 批准号:
    2340075
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
CAREER: Towards Environment-Aware Adaptive Safety for Learning-Enabled Multiagent Systems with Application to Target Drone Capturing
职业:为支持学习的多智能体系统实现环境感知的自适应安全,并应用于目标无人机捕获
  • 批准号:
    2336189
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
Career: Learning-Enabled Medical Cyber-Physical Systems
职业:支持学习的医疗网络物理系统
  • 批准号:
    2339637
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
EAGER: Private Blockchain-Enabled Federated Learning Framework for Distributed Manufacturing Networks
EAGER:支持私有区块链的分布式制造网络联合学习框架
  • 批准号:
    2420964
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324936
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了