Improving the Quality Assurance of Machine-Learning Software Applications
提高机器学习软件应用程序的质量保证
基本信息
- 批准号:RGPIN-2019-06956
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning (ML) is increasingly deployed in large-scale and critical systems thanks to recent breakthroughs in deep learning and reinforcement learning. We are now using software applications powered by ML in critical aspects of our daily lives; from finance, energy, to health and transportation. The economic benefits of Machine-Learning Software Applications (MLSA) and Artificial Intelligence (AI) in general is forecast to surpass USD 8.81 Billion by 2022. However, ensuring the quality assurance of MLSA is still very challenging as evidenced by the recent deadly incident caused by the $47-million Michigan Integrated Data Automated System (MiDAS), or the Uber's self-driving car that ran into a pedestrian even though the car's sensors detected her presence. The MLSA running the Uber's car reportedly considered the detection of the pedestrian as a "false positive". The main reason behind the difficulty to ensure quality in MLSA is the shift in the development paradigm induced by ML and AI. Traditionally, software systems are constructed deductively, by writing down the rules that govern the behavior of the system as program code. However, with ML, these rules are inferred from training data (i.e., the requirements are generated inductively). This paradigm shift in application development makes it difficult to reason about the behavior of software systems with ML components, resulting in systems that are intrinsically challenging to test and verify. A defect in a MLSA may come from its training data, program code, execution environment, or third-party frameworks (e.g., TensorFlow). Also, ML models must be retrained and evolved constantly to cope with changes in users' behaviors, model drift, or adversarial interactions for example, hence the necessity to architect them in a way that minimizes the cost of these frequent models changes on their overall maintenance and evolution. Current existing software development techniques must be revisited and adapted to this new reality. The goal of this research program is to develop techniques and tools to support quality assurance activities for MLSA systems, given that they do not have (complete) specifications or even source code corresponding to some of their critical behaviors (some MLSA rely on proprietary third-party libraries like Intel Math Kernel Library for many critical operations). Through this research program, my students and I will identify good and bad development practices that can impede the maintenance and the reliability of MLSA. I will also develop techniques and tools to help developers detect and correct errors in MLSA, both at design and implementation levels.
由于最近在深度学习和强化学习方面的突破,机器学习(ML)越来越多地部署在大规模和关键系统中。我们现在正在日常生活的关键方面使用由ML提供支持的软件应用程序;从金融,能源到健康和交通。机器学习软件应用(MLSA)和人工智能(AI)的经济效益预计到2022年将超过88.1亿美元。然而,确保MLSA的质量保证仍然非常具有挑战性,最近价值4700万美元的密歇根综合数据自动化系统(MiDAS)造成的致命事件,或者Uber的自动驾驶汽车撞上行人,尽管汽车的传感器检测到了她的存在。据报道,运行Uber汽车的MLSA认为行人的检测是“误报”。MLSA难以确保质量的主要原因是ML和AI引起的开发范式的转变。传统上,软件系统是通过演绎的方式构建的,通过将控制系统行为的规则写下来作为程序代码。然而,使用ML,这些规则是从训练数据中推断出来的(即,感应地产生需求)。应用程序开发中的这种范式转变使得很难推理具有ML组件的软件系统的行为,从而导致系统在测试和验证方面具有内在的挑战性。MLSA中的缺陷可能来自其训练数据、程序代码、执行环境或第三方框架(例如,TensorFlow)。此外,ML模型必须不断地重新训练和进化,以科普用户行为的变化,例如模型漂移或对抗性交互,因此有必要以一种最大限度地减少这些频繁模型变化对其整体维护和进化的成本的方式来构建它们。当前现有的软件开发技术必须重新审视并适应这一新的现实。 该研究计划的目标是开发技术和工具,以支持MLSA系统的质量保证活动,因为它们没有(完整的)规范,甚至没有与其某些关键行为相对应的源代码(某些MLSA依赖专有的第三方库,如英特尔数学内核库来执行许多关键操作)。通过这个研究项目,我和我的学生将确定好的和坏的开发实践,可以阻碍MLSA的维护和可靠性。我还将开发技术和工具来帮助开发人员在设计和实现级别检测和纠正MLSA中的错误。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khomh, Foutse其他文献
Physics-Guided Adversarial Machine Learning for Aircraft Systems Simulation
- DOI:
10.1109/tr.2022.3196272 - 发表时间:
2022-08-25 - 期刊:
- 影响因子:5.9
- 作者:
Ben Braiek, Houssem;Reid, Thomas;Khomh, Foutse - 通讯作者:
Khomh, Foutse
An empirical study of IoT topics in IoT developer discussions on Stack Overflow
- DOI:
10.1007/s10664-021-10021-5 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:4.1
- 作者:
Uddin, Gias;Sabir, Fatima;Khomh, Foutse - 通讯作者:
Khomh, Foutse
An empirical study of crash-inducing commits in Mozilla Firefox
- DOI:
10.1007/s11219-017-9361-y - 发表时间:
2018-06-01 - 期刊:
- 影响因子:1.9
- 作者:
An, Le;Khomh, Foutse;Gueheneuc, Yann-Gael - 通讯作者:
Gueheneuc, Yann-Gael
Automatic Mining of Opinions Expressed About APIs in Stack Overflow
- DOI:
10.1109/tse.2019.2900245 - 发表时间:
2021-03-01 - 期刊:
- 影响因子:7.4
- 作者:
Uddin, Gias;Khomh, Foutse - 通讯作者:
Khomh, Foutse
Machine learning application development: practitioners' insights
- DOI:
10.1007/s11219-023-09621-9 - 发表时间:
2023-03-30 - 期刊:
- 影响因子:1.9
- 作者:
Rahman, Md Saidur;Khomh, Foutse;Washizaki, Hironori - 通讯作者:
Washizaki, Hironori
Khomh, Foutse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khomh, Foutse', 18)}}的其他基金
Improving the Quality Assurance of Machine-Learning Software Applications
提高机器学习软件应用程序的质量保证
- 批准号:
RGPIN-2019-06956 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
A Comprehensive Framework for the Automatic Evaluation of the Quality of ML-based Software Systems
基于机器学习的软件系统质量自动评估的综合框架
- 批准号:
561420-2020 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Alliance Grants
Improving the Quality Assurance of Machine-Learning Software Applications
提高机器学习软件应用程序的质量保证
- 批准号:
RGPIN-2019-06956 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Improving the Quality Assurance of Machine-Learning Software Applications
提高机器学习软件应用程序的质量保证
- 批准号:
RGPAS-2019-00083 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Improving the Quality Assurance of Machine-Learning Software Applications
提高机器学习软件应用程序的质量保证
- 批准号:
RGPAS-2019-00083 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Improving the Quality Assurance of Machine-Learning Software Applications
提高机器学习软件应用程序的质量保证
- 批准号:
RGPIN-2019-06956 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Designing Highly Recoverable Cloud Based Software Applications
设计高度可恢复的基于云的软件应用程序
- 批准号:
RGPIN-2014-04611 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Applying Machine Learning Techniques to Automatically Process and Match Candidates Applications to Job Descriptions
应用机器学习技术自动处理候选人申请并将其与职位描述进行匹配
- 批准号:
521807-2017 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Engage Grants Program
Designing Highly Recoverable Cloud Based Software Applications
设计高度可恢复的基于云的软件应用程序
- 批准号:
RGPIN-2014-04611 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Designing Highly Recoverable Cloud Based Software Applications
设计高度可恢复的基于云的软件应用程序
- 批准号:
RGPIN-2014-04611 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
- 批准号:
2334380 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Quality Assurance of Mobile Applications by Effective Testing and Repair
通过有效的测试和修复来保证移动应用程序的质量
- 批准号:
DE240100040 - 财政年份:2024
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Early Career Researcher Award
Evaluation of Transmission Low-frequency Raman Spectroscopy for Application to Quality Assurance of Continuous Manufactured Solid Dosage Forms
透射低频拉曼光谱在连续生产固体剂型质量保证中的应用评价
- 批准号:
23K06071 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Property-Driven Quality Assurance of Adversarial Robustness of Deep Neural Networks
深度神经网络对抗鲁棒性的属性驱动质量保证
- 批准号:
23K11049 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Frameworks: Automated Quality Assurance and Quality Control for the StraboSpot Geologic Information System and Observational Data
合作研究:框架:StraboSpot 地质信息系统和观测数据的自动化质量保证和质量控制
- 批准号:
2311822 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Clinical Pharmacology Quality Assurance (CPQA)
临床药理学质量保证(CPQA)
- 批准号:
10850504 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Resource to Advance Pediatrics and HIV Prevention Science (RAPPS): Quality Assurance/Quality Control (QA/QC) Support
推进儿科和艾滋病毒预防科学 (RAPPS) 的资源:质量保证/质量控制 (QA/QC) 支持
- 批准号:
10850722 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Collaborative Research: Frameworks: Automated Quality Assurance and Quality Control for the StraboSpot Geologic Information System and Observational Data
合作研究:框架:StraboSpot 地质信息系统和观测数据的自动化质量保证和质量控制
- 批准号:
2311821 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Research on standardization of high-molecular-mass condensed tannins for quality assurance of functional foods
功能食品质量保证高分子缩合单宁标准化研究
- 批准号:
23K10817 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
QuADProBe: Quality Assurance Detector for Proton Beam Therapy
QuADProbe:质子束治疗的质量保证探测器
- 批准号:
ST/W002175/1 - 财政年份:2023
- 资助金额:
$ 2.99万 - 项目类别:
Research Grant