Applying Machine Learning Techniques to Automatically Process and Match Candidates Applications to Job Descriptions

应用机器学习技术自动处理候选人申请并将其与职位描述进行匹配

基本信息

  • 批准号:
    521807-2017
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

TAS (Techno Aero Services inc.) is a Canadian recruitment agency specialized in aeronautics, engineering, andtechnology. At TAS, candidates currently submit resumes to a database through a web interface. These resumesare then manually processed by recruiters before a suitable candidate is matched to a position. Through thislaborious manual process, great prospective candidates often get lost in the piles. This project aims to leveragetext mining and machine learning techniques to automatically collect information about prospective candidatesfrom their submitted resume and public profiles on websites like Linked In, Twitter, and Facebook to providerecruiters with an overall picture of a candidate's strengths and weaknesses. Both the technical andcommunication skills of the candidates will be analyzed and summarized. The goal is to provide recruiters withthe information they need to judge a candidate on both his mastery of key skills and his ability to fit into thecompany culture.To achieve this goal, we will leverage big data processing infrastructure, including machine learning throughframeworks like Google Tensorflow, to automatically extract useful information from textual data aboutprospective candidates. Deep learning approaches have proved to be powerful tools for patterns recognition andclassification in diverse problems, such as speech, text, and image recognition. We expect it to also achieve agood performance in automatically detecting useful signal about prospective candidates from data collectedabout them from their resume and the Web.
TAS(Techno Aero Services Inc.)是一家专门从事航空、工程和技术的加拿大招聘机构。在TAS,候选人目前通过网络界面向数据库提交简历。这些简历随后由招聘人员手动处理,然后合适的候选人才能匹配到某个职位。通过这种繁琐的手工过程,优秀的潜在候选人往往会在成堆的求职者中迷失方向。该项目旨在利用文本挖掘和机器学习技术,从潜在候选人提交的简历和LinkIn、Twitter和Facebook等网站上的公共个人资料中自动收集有关潜在候选人的信息,以便为招聘人员提供候选人优势和劣势的总体情况。应聘者的技术能力和沟通能力都将被分析和总结。我们的目标是为招聘人员提供他们需要的信息,以判断候选人对关键技能的掌握程度以及他适应公司文化的能力。为了实现这一目标,我们将利用大数据处理基础设施,包括通过Google Tensor Flow等框架进行机器学习,从文本数据中自动提取关于潜在候选人的有用信息。深度学习方法已经被证明是语音、文本和图像识别等各种问题中模式识别和分类的有力工具。我们希望它在自动检测从简历和网络上收集的关于潜在候选人的数据中关于他们的有用信号方面也能取得良好的表现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Khomh, Foutse其他文献

Physics-Guided Adversarial Machine Learning for Aircraft Systems Simulation
  • DOI:
    10.1109/tr.2022.3196272
  • 发表时间:
    2022-08-25
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Ben Braiek, Houssem;Reid, Thomas;Khomh, Foutse
  • 通讯作者:
    Khomh, Foutse
An empirical study of IoT topics in IoT developer discussions on Stack Overflow
  • DOI:
    10.1007/s10664-021-10021-5
  • 发表时间:
    2021-11-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Uddin, Gias;Sabir, Fatima;Khomh, Foutse
  • 通讯作者:
    Khomh, Foutse
An empirical study of crash-inducing commits in Mozilla Firefox
  • DOI:
    10.1007/s11219-017-9361-y
  • 发表时间:
    2018-06-01
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    An, Le;Khomh, Foutse;Gueheneuc, Yann-Gael
  • 通讯作者:
    Gueheneuc, Yann-Gael
Automatic Mining of Opinions Expressed About APIs in Stack Overflow
Machine learning application development: practitioners' insights
  • DOI:
    10.1007/s11219-023-09621-9
  • 发表时间:
    2023-03-30
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Rahman, Md Saidur;Khomh, Foutse;Washizaki, Hironori
  • 通讯作者:
    Washizaki, Hironori

Khomh, Foutse的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Khomh, Foutse', 18)}}的其他基金

Improving the Quality Assurance of Machine-Learning Software Applications
提高机器学习软件应用程序的质量保证
  • 批准号:
    RGPIN-2019-06956
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Improving the Quality Assurance of Machine-Learning Software Applications
提高机器学习软件应用程序的质量保证
  • 批准号:
    RGPIN-2019-06956
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
A Comprehensive Framework for the Automatic Evaluation of the Quality of ML-based Software Systems
基于机器学习的软件系统质量自动评估的综合框架
  • 批准号:
    561420-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Improving the Quality Assurance of Machine-Learning Software Applications
提高机器学习软件应用程序的质量保证
  • 批准号:
    RGPIN-2019-06956
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Improving the Quality Assurance of Machine-Learning Software Applications
提高机器学习软件应用程序的质量保证
  • 批准号:
    RGPAS-2019-00083
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Improving the Quality Assurance of Machine-Learning Software Applications
提高机器学习软件应用程序的质量保证
  • 批准号:
    RGPAS-2019-00083
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Improving the Quality Assurance of Machine-Learning Software Applications
提高机器学习软件应用程序的质量保证
  • 批准号:
    RGPIN-2019-06956
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Designing Highly Recoverable Cloud Based Software Applications
设计高度可恢复的基于云的软件应用程序
  • 批准号:
    RGPIN-2014-04611
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Designing Highly Recoverable Cloud Based Software Applications
设计高度可恢复的基于云的软件应用程序
  • 批准号:
    RGPIN-2014-04611
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Designing Highly Recoverable Cloud Based Software Applications
设计高度可恢复的基于云的软件应用程序
  • 批准号:
    RGPIN-2014-04611
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Demonstrating the feasibility of applying machine learning models to railway condition data: Engine condition monitoring and failure prediction
展示将机器学习模型应用于铁路状况数据的可行性:发动机状况监测和故障预测
  • 批准号:
    10080979
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
Collaborative Research: RUI--Applying Measurements, Models, and Machine Learning to Improve Parameterization of Aerosol Water Uptake and Cloud Condensation Nuclei
合作研究:RUI——应用测量、模型和机器学习来改进气溶胶吸水和云凝核的参数化
  • 批准号:
    2307150
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI--Applying Measurements, Models, and Machine Learning to Improve Parameterization of Aerosol Water Uptake and Cloud Condensation Nuclei
合作研究:RUI——应用测量、模型和机器学习来改进气溶胶吸水和云凝核的参数化
  • 批准号:
    2307151
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Applying Machine Learning to local structure in metallic systems for structural applications
将机器学习应用于金属系统的局部结构以实现结构应用
  • 批准号:
    2903293
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
EAGER: SaTC: Applying Adversarial Machine Learning Techniques to Recover Deleted Information from Flash Storage
EAGER:SaTC:应用对抗性机器学习技术从闪存恢复​​已删除的信息
  • 批准号:
    2317563
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
Developing a blood fatty acid-based algorithm as an early predictor of insulin resistance: Applying machine learning to harmonized data from prospective cohort studies
开发基于血液脂肪酸的算法作为胰岛素抵抗的早期预测因子:将机器学习应用于前瞻性队列研究的统一数据
  • 批准号:
    10696711
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
Foundation for detecting and applying machine learning design patterns through machine learning
通过机器学习检测和应用机器学习设计模式的基础
  • 批准号:
    23K18470
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Applying advanced molecular biology, metabolomics and image analysis using machine-learning technology to improve wheat resistance against Fusarium head blight
利用机器学习技术应用先进的分子生物学、代谢组学和图像分析来提高小麦对赤霉病的抗性
  • 批准号:
    570375-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Barcoding Magmas: Applying Machine Learning In Zircon Geochemistry To Increase Provenance Accuracy
岩浆条形码:在锆石地球化学中应用机器学习以提高来源准确性
  • 批准号:
    NE/X011259/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Research Grant
Applying Machine Learning to Extract Parameters from Radiographs and Ultrasound Scans to Predict the Progression of Scoliosis
应用机器学习从射线照片和超声扫描中提取参数来预测脊柱侧凸的进展
  • 批准号:
    548082-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了