Robust System Modeling, Process Monitoring and Fault Diagnosis in the Era of Big Data

大数据时代的鲁棒系统建模、过程监控和故障诊断

基本信息

  • 批准号:
    RGPIN-2020-04138
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Multivariate statistical methods have been widely studied to extract valuable information from collected data for process monitoring and fault diagnosis, which play an important role to ensure normal operation of industrial processes. Recently, with the explosive acceleration in technologies development, the amount of data collected has grown exponentially, and the traditional statistical methods become less preferable, since they cannot process billions of data samples in real time due to their computational limitations. Moreover, new challenges arise with voluminous data, such as messy datasets (abnormal data with outliers, missing values and large noise), heterogeneous data sources, and complex dynamics and nonlinearity. To ensure energy efficiency, product quality and plant safety in modern large-scale industrial processes, it is important to address these issues and detect process anomalies and equipment malfunctions as early as possible. Therefore, there is a great incentive to develop large-scale robust system modeling, process monitoring and fault diagnosis frameworks in the era of big data. The long-term goal is to design a systematic framework to extract knowledge from big datasets for smart decision making, including research on scalability and robustness enhancement, dynamics and nonlinearity handling, model structure re-design (deep learning and reinforcement learning), and development of large-scale statistical analytics platforms. The proposed program will focus on two shorter-term objectives simultaneously: (O1) design of large-scale data preprocessing techniques and direct robust models, and (O2) design of large-scale robust time series models. Specifically, O1 will focus on developing advanced parallel data cleaning techniques and robust fusion to fuse mixed data sources, while O2 will incorporate temporal information and initiate the design of robust time series clustering for anomaly detection. Together, O1 and O2 will integrate scalability and robustness to handle the aforementioned data issues. The monitoring and diagnosis frameworks will be developed, which will be verified through both simulated and industrial processes. The program will provide a crucial theoretical foundation for research on big data analytics in process systems engineering (PSE) area, while also benefitting other areas such as drug quality detection in the pharmaceutical industry. Early detection and diagnosis of potential hazards will improve productivity and operation safety, and reduce environmental impact, which will bring significant economic benefits to Canada. For instance, furnace explosion can be effectively avoided by monitoring water leakage in electric arc furnaces. The research personnel in the program will obtain strong modeling and analytical skills, which will equip them to pursue academic and industrial positions in PSE and other areas such as computer science, contributing high quality professionals to the Canadian workforce.
多元统计方法从采集的数据中提取有价值的信息用于过程监测和故障诊断,对保证工业过程的正常运行具有重要作用。近年来,随着科技的飞速发展,数据量呈指数级增长,传统的统计方法由于其计算能力的限制,无法在真实的时间内处理数十亿的数据样本,因而变得不那么可取。此外,海量数据带来了新的挑战,例如杂乱的数据集(异常数据,异常值,缺失值和大噪声),异构数据源以及复杂的动态和非线性。为了确保现代大规模工业过程中的能源效率、产品质量和工厂安全,必须解决这些问题,并尽早发现过程异常和设备故障。因此,在大数据时代,开发大规模鲁棒系统建模,过程监控和故障诊断框架具有很大的激励作用。长期目标是设计一个系统框架,从大数据集中提取知识,用于智能决策,包括研究可扩展性和鲁棒性增强,动态和非线性处理,模型结构重新设计(深度学习和强化学习),以及开发大规模统计分析平台。该计划将同时关注两个短期目标:(O1)设计大规模数据预处理技术和直接鲁棒模型,以及(O2)设计大规模鲁棒时间序列模型。具体而言,O1将专注于开发先进的并行数据清理技术和强大的融合,以融合混合数据源,而O2将纳入时间信息,并启动用于异常检测的强大时间序列聚类的设计。O1和O2将整合可扩展性和健壮性,以处理上述数据问题。将制定监测和诊断框架,并通过模拟和工业流程进行验证。该计划将为过程系统工程(PSE)领域的大数据分析研究提供重要的理论基础,同时也有利于制药行业的药物质量检测等其他领域。早期发现和诊断潜在危险将提高生产率和操作安全性,并减少对环境的影响,这将为加拿大带来重大的经济效益。例如,通过监测电弧炉的漏水情况,可以有效地避免炉膛爆炸。该计划的研究人员将获得强大的建模和分析技能,这将使他们能够在PSE和计算机科学等其他领域从事学术和工业职位,为加拿大劳动力提供高质量的专业人才。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhu, Qinqin其他文献

Urinary nicotine metabolites are associated with cognitive impairment among the elderly in southern China.
  • DOI:
    10.18332/tid/170423
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Huang, Chao;Ren, Xiaohu;Xu, Benhong;Liu, Peiyi;Li, Tian;Zhu, Qinqin;Huang, Jia;Chen, Xiao;Wu, Desheng;Yang, Xifei;Zhu, Feiqi;Liu, Jianjun
  • 通讯作者:
    Liu, Jianjun
Production of quercetin, kaempferol and their glycosidic derivatives from the aqueous-organic extracted residue of litchi pericarp with Aspergillus awamori
  • DOI:
    10.1016/j.foodchem.2013.08.048
  • 发表时间:
    2014-02-15
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Lin, Sen;Zhu, Qinqin;Jiang, Yueming
  • 通讯作者:
    Jiang, Yueming
Thermodegradable multisegmented polymer synthesized by consecutive radical addition-coupling reaction of a,?-macrobiradicals and dithioester
α,β-大分子双自由基与二硫酯连续自由基加成偶联反应合成的热降解多段聚合物
Structural Identification of (1 -> 6)-alpha-D-Glucan, a Key Responsible for the Health Benefits of Longan, and Evaluation of Anticancer Activity
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Zhu, Qinqin;Jiang, Yueming;Lin, Sen;Wen, Lingrong;Wu, Dan;Zhao, Mouming;Chen, Feng;Jia, Yongxia;Yang, Bao;
  • 通讯作者:
Analysis of Chinese Olive Cultivars Difference by the Structural Characteristics of Oligosaccharides
从低聚糖结构特征分析中国橄榄品种差异
  • DOI:
    10.1007/s12161-013-9566-z
  • 发表时间:
    2013-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Yang, Bao;Lin, Sen;Zhu, Qinqin;Wu, Dan;Jiang, Yueming;Zhao, Mouming;Sun, Jian;Luo, Donghui;Zeng, Songjun
  • 通讯作者:
    Zeng, Songjun

Zhu, Qinqin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhu, Qinqin', 18)}}的其他基金

Robust System Modeling, Process Monitoring and Fault Diagnosis in the Era of Big Data
大数据时代的鲁棒系统建模、过程监控和故障诊断
  • 批准号:
    RGPIN-2020-04138
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Robust System Modeling, Process Monitoring and Fault Diagnosis in the Era of Big Data
大数据时代的鲁棒系统建模、过程监控和故障诊断
  • 批准号:
    RGPIN-2020-04138
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Robust System Modeling, Process Monitoring and Fault Diagnosis in the Era of Big Data
大数据时代的鲁棒系统建模、过程监控和故障诊断
  • 批准号:
    DGECR-2020-00460
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
TBX1/LKB1轴阻断system Xc活性调控AML细胞铁死亡的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
TET2通过调控BAP1-System Xc-轴促进紫拉非尼诱导的肝细胞癌铁死亡的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    青年科学基金项目
P3H1通过ATF4/System Xc-轴抑制肾癌铁死亡和抗肿瘤免疫反应的作用及机制研究
  • 批准号:
    82372704
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于PNO1介导system Xc-/GSH途径调控肠上皮细胞自噬依赖性铁死亡探讨加味胶七散治疗溃疡性结肠炎的机制
  • 批准号:
    82304982
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于单细胞测序探讨淫羊藿苷对Erastin诱导髓核细胞铁死亡相关system-Xc/GSH/GPX4分子轴线的调控作用
  • 批准号:
    82360947
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
miR-198 靶向 Nrf2 抑制 System Xc-通路调控滋养细胞铁死亡在子痫前期中的机制
  • 批准号:
    2022JJ70123
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
BAP1介导H2B去泛素化抑制System Xc-在蛛网膜下腔出血神经元铁死亡中的作用和机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
GOALI: A System Theoretical Framework for Modeling, Analysis and Closed-loop Management of Supply Chains of Perishable Products
GOALI:易腐产品供应链建模、分析和闭环管理的系统理论框架
  • 批准号:
    2232412
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
  • 批准号:
    2243776
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
  • 批准号:
    2243775
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Construction of a learning support system through learning behavior prediction using student modeling
使用学生建模通过学习行为预测构建学习支持系统
  • 批准号:
    23K17604
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Multi-scale modeling of thermal and fluid flow of cryogenic liquid hydrogen applied for liquid rocket propulsion system
用于液体火箭推进系统的低温液氢热流和流体流的多尺度建模
  • 批准号:
    23H01606
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CRII: SaTC: Design Space Modeling for Logic Obfuscation to Enable System-Wide Security during IC Manufacture and Test
CRII:SaTC:逻辑混淆的设计空间建模,以在 IC 制造和测试期间实现系统范围的安全
  • 批准号:
    2245573
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
CRCNS Research Proposal: Learning by Looking: Modeling visual system representation formation via foveated sensing in a 3-D world
CRCNS 研究提案:通过观察学习:通过 3D 世界中的注视点感知对视觉系统表征形成进行建模
  • 批准号:
    2309041
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了