Systems modelling of microbial communities using in vitro and computational approaches

使用体外和计算方法对微生物群落进行系统建模

基本信息

  • 批准号:
    RGPIN-2020-03922
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Understanding and predicting how microbial communities react to changes in their environment is critical for the development of microbiome-based applications. There are many fields where being able to control the composition and activity of microbiomes would be beneficial, including biotechnology, bioremediation and animal/human nutrition. Previous studies suggest that by knowing the composition of a microbiome, we could predict its response to specific interventions. In vitro models of microbial communities provide useful systems for the high-throughput study of the impact of molecules on microbiomes. It has been shown previously that in vitro microbiomes allowed discoveries that were replicated in animal models. These approaches are also able to cost-effectively provide a large quantity of information that is necessary to model microbial communities with machine learning. To study the microbiome, scientists sequence the genomes of bacterial communities. This provides large quantities of DNA sequences that must be carefully interpreted. In most studies, researchers quantify the abundance of the taxonomical origin of bacteria and determine the metabolic functions of the genes encoded in bacterial genomes. However, only 35% to 45% of genes from the gut microbiome can be associated with actual functions. This often limits the analysis and interpretation of microbiome-related studies and overlooks the extensive functional and ecological possibilities of microbial communities. In this research program, we aim to create the basis of a framework for the targeted modulation of microbial communities. To do so, we will address two critical aspects that need to be resolved before we can deliberately modulate microbiomes to get specific effects. First, we will devise new ways to represent microbiomes in a manner that allows to efficiently consider all the genes and bacterial species, including those with unknown functions. We will use machine learning to discover meaningful patterns in the data that may be overlooked using current methods based on bacteria quantification and gene function profiling. Second, we will use machine learning to predict the response of the microbiome to specific conditions and to determine the best sequence of interventions to obtain a desired microbiome effect. We will use in vitro culture of stool samples in presence of three trace minerals as a model to develop new methods to make possible targeted microbiome modulation. The use of machine learning to model the response of microbiomes to their chemical environment will permit a deeper understanding of the interplay between microorganisms and their environment. Overall, our research program will provide methods to modulate microbiomes that will be applicable to many fields, including biotechnology and personalized nutrition for both humans and animals. This project will also provide specific guidelines to design studies to optimize microbial communities using machine learning.
了解和预测微生物群落如何对环境变化做出反应对于开发基于微生物组的应用至关重要。在许多领域,能够控制微生物组的组成和活性将是有益的,包括生物技术、生物修复和动物/人类营养。以前的研究表明,通过了解微生物组的组成,我们可以预测其对特定干预措施的反应。微生物群落的体外模型为高通量研究分子对微生物组的影响提供了有用的系统。以前已经表明,体外微生物组允许在动物模型中复制的发现。这些方法还能够经济有效地提供大量信息,这些信息是通过机器学习对微生物群落进行建模所必需的。为了研究微生物组,科学家们对细菌群落的基因组进行了测序。这提供了大量的DNA序列,必须仔细解释。在大多数研究中,研究人员量化了细菌分类起源的丰度,并确定了细菌基因组中编码的基因的代谢功能。然而,来自肠道微生物组的基因中只有35%到45%与实际功能相关。这往往限制了微生物组相关研究的分析和解释,并忽视了微生物群落的广泛功能和生态可能性。在这项研究计划中,我们的目标是为微生物群落的目标调制框架奠定基础。要做到这一点,我们将解决两个关键方面,需要解决之前,我们可以故意调节微生物组,以获得特定的效果。首先,我们将设计新的方法来代表微生物组,以有效地考虑所有基因和细菌物种,包括那些功能未知的基因和细菌物种。我们将使用机器学习来发现数据中有意义的模式,这些模式可能会被基于细菌定量和基因功能分析的现有方法所忽略。其次,我们将使用机器学习来预测微生物组对特定条件的反应,并确定最佳干预序列,以获得所需的微生物组效果。我们将在存在三种微量矿物质的情况下使用粪便样本的体外培养物作为模型,以开发新的方法来实现靶向微生物组调节。使用机器学习来模拟微生物对其化学环境的反应,将使人们能够更深入地了解微生物与其环境之间的相互作用。总的来说,我们的研究计划将提供调节微生物组的方法,这些方法将适用于许多领域,包括生物技术和人类和动物的个性化营养。该项目还将提供具体的指导方针,以设计使用机器学习优化微生物群落的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raymond, Frédéric其他文献

Raymond, Frédéric的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raymond, Frédéric', 18)}}的其他基金

Systems modelling of microbial communities using in vitro and computational approaches
使用体外和计算方法对微生物群落进行系统建模
  • 批准号:
    RGPIN-2020-03922
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Système de chromatographie en phase gazeuse couplé à un spectromètre de masse pour le développement d'une plateforme de volatilomique dédiée au domaine bioalimentaire
液相色谱系统与生物营养领域挥发性物质开发平台的质谱联用
  • 批准号:
    RTI-2023-00413
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Research Tools and Instruments
Systems modelling of microbial communities using in vitro and computational approaches
使用体外和计算方法对微生物群落进行系统建模
  • 批准号:
    RGPIN-2020-03922
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Systems modelling of microbial communities using in vitro and computational approaches
使用体外和计算方法对微生物群落进行系统建模
  • 批准号:
    DGECR-2020-00001
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CoMoBio: Computational Modelling of the Formation of Biofilm Microbial Systems
CoMoBio:生物膜微生物系统形成的计算模型
  • 批准号:
    2746335
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Studentship
Modelling microbial evolution: predicting evolutionary escape
微生物进化建模:预测进化逃逸
  • 批准号:
    RGPIN-2019-06294
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Systems modelling of microbial communities using in vitro and computational approaches
使用体外和计算方法对微生物群落进行系统建模
  • 批准号:
    RGPIN-2020-03922
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Life and death of Southern Explorer Ridge hydrothermal vents: microbial landscape modelling for the sustainable development of deep-sea sulphide mining
南方探险家岭热液喷口的生与死:深海硫化物采矿可持续发展的微生物景观模型
  • 批准号:
    565989-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Modelling microbial evolution: predicting evolutionary escape
微生物进化建模:预测进化逃逸
  • 批准号:
    RGPIN-2019-06294
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Systems modelling of microbial communities using in vitro and computational approaches
使用体外和计算方法对微生物群落进行系统建模
  • 批准号:
    RGPIN-2020-03922
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling of interspecies microbial inhibition
种间微生物抑制建模
  • 批准号:
    551932-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    University Undergraduate Student Research Awards
Systems modelling of microbial communities using in vitro and computational approaches
使用体外和计算方法对微生物群落进行系统建模
  • 批准号:
    DGECR-2020-00001
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Launch Supplement
Environmental fate modelling of PPCPs and microbial fecal indicators in Tokyo coastal area after rainfall events
降雨事件后东京沿海地区 PPCP 和微生物粪便指标的环境归趋模型
  • 批准号:
    20J12048
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Modelling concerted microbial metabolic activities to mimic multicellular behaviour and its applications in biotechnology and biomanufacturing
模拟协同微生物代谢活动以模拟多细胞行为及其在生物技术和生物制造中的应用
  • 批准号:
    2413152
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了