Testing and Debugging Machine Learning-based Autonomous Systems

测试和调试基于机器学习的自治系统

基本信息

  • 批准号:
    RGPIN-2020-04035
  • 负责人:
  • 金额:
    $ 4.66万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

To deploy autonomous systems, such as fully autonomous cars in open human environments, it is necessary to ensure their adherence to functional safety requirements. With systems integrating traditional software components, this is achieved through functional safety certification practices that assure specifications validity, implementation understandability, and implementation correctness. Unfortunately, modern autonomous systems rely on Deep Neural Network (DNN) components that prevent the adoption of traditional certification practices because of their black-box nature. Indeed, the specifications of DNN-based systems are implicit and consist of the inputs used to train the DNN; also, their implementation consists of layers of neurons whose logic cannot be understood through inspection. We will overcome these limitations by developing automated solutions to verify the compliance of autonomous system software with its functional safety requirements. To achieve this objective, we will develop innovative and efficient methods to leverage simulation software. Indeed, with DNN-based systems, simulated environments are necessary because specifications validity, implementation understandability, and implementation correctness can be evaluated only by exercising the system. To efficiently perform safety compliance verification activities, we will use evolutionary algorithms to drive simulators towards the generation of inputs that lead to DNN errors. To support problem understanding, we will leverage algorithms that extract information concerning DNN behaviour. To improve the system, we will generate training sets using simulators and generative networks.
为了在开放的人类环境中部署自主系统,例如完全自主的汽车,有必要确保它们符合功能安全要求。对于集成传统软件组件的系统,这是通过功能安全认证实践来实现的,这些实践确保了规范的有效性、实现的可理解性和实现的正确性。不幸的是,现代自治系统依赖于深度神经网络(DNN)组件,由于其黑箱性质,这些组件阻止了传统认证实践的采用。事实上,基于DNN的系统的规范是隐式的,由用于训练DNN的输入组成;此外,它们的实现由神经元层组成,其逻辑无法通过检查来理解。我们将通过开发自动化解决方案来克服这些限制,以验证自主系统软件是否符合其功能安全要求。为了实现这一目标,我们将开发创新和有效的方法来利用模拟软件。事实上,对于基于DNN的系统,模拟环境是必要的,因为规范的有效性,实现的可理解性和实现的正确性只能通过测试系统来评估。为了有效地执行安全合规性验证活动,我们将使用进化算法来驱动模拟器生成导致DNN错误的输入。为了支持问题理解,我们将利用提取有关DNN行为信息的算法。为了改进系统,我们将使用模拟器和生成网络生成训练集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Briand, Lionel其他文献

Embracing the Engineering Side of Software Engineering
  • DOI:
    10.1109/ms.2012.86
  • 发表时间:
    2012-07-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Briand, Lionel
  • 通讯作者:
    Briand, Lionel
An Active Learning Approach for Improving the Accuracy of Automated Domain Model Extraction
The Case for Context-Driven Software Engineering Research Generalizability Is Overrated
  • DOI:
    10.1109/ms.2017.3571562
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Briand, Lionel;Bianculli, Domenico;Sabetzadeh, Mehrdad
  • 通讯作者:
    Sabetzadeh, Mehrdad
Random Testing: Theoretical Results and Practical Implications
  • DOI:
    10.1109/tse.2011.121
  • 发表时间:
    2012-03-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Arcuri, Andrea;Iqbal, Muhammad Zohaib;Briand, Lionel
  • 通讯作者:
    Briand, Lionel
A Hitchhiker's guide to statistical tests for assessing randomized algorithms in software engineering

Briand, Lionel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Briand, Lionel', 18)}}的其他基金

Automated Testing of Software Systems
软件系统的自动化测试
  • 批准号:
    CRC-2018-00051
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Canada Research Chairs
Testing and Debugging Machine Learning-based Autonomous Systems
测试和调试基于机器学习的自治系统
  • 批准号:
    RGPIN-2020-04035
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Automated Testing Of Software Systems
软件系统的自动化测试
  • 批准号:
    CRC-2018-00051
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Canada Research Chairs
Automated Testing of Software Systems
软件系统的自动化测试
  • 批准号:
    1000232329-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Canada Research Chairs
Testing and Debugging Machine Learning-based Autonomous Systems
测试和调试基于机器学习的自治系统
  • 批准号:
    RGPIN-2020-04035
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Automated Testing of Software Systems
软件系统的自动化测试
  • 批准号:
    1000232329-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Canada Research Chairs
Canada Research Chair in Software Quality Engineering
加拿大软件质量工程研究主席
  • 批准号:
    1000201630-2002
  • 财政年份:
    2008
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Canada Research Chairs
Testing software componenets
测试软件组件
  • 批准号:
    172639-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Testing software componenets
测试软件组件
  • 批准号:
    172639-2004
  • 财政年份:
    2006
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Testing software componenets
测试软件组件
  • 批准号:
    172639-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Testing and Debugging Machine Learning-based Autonomous Systems
测试和调试基于机器学习的自治系统
  • 批准号:
    RGPIN-2020-04035
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Testing, Debugging and Repairing Machine Learning Software at the System Level
系统级测试、调试和修复机器学习软件
  • 批准号:
    RGPAS-2021-00034
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Testing, Debugging and Repairing Machine Learning Software at the System Level
系统级测试、调试和修复机器学习软件
  • 批准号:
    RGPIN-2021-02549
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Testing, Debugging and Repairing Machine Learning Software at the System Level
系统级测试、调试和修复机器学习软件
  • 批准号:
    RGPAS-2021-00034
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Testing, Debugging and Repairing Machine Learning Software at the System Level
系统级测试、调试和修复机器学习软件
  • 批准号:
    RGPIN-2021-02549
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Testing, Debugging and Repairing Machine Learning Software at the System Level
系统级测试、调试和修复机器学习软件
  • 批准号:
    DGECR-2021-00019
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Launch Supplement
Testing and Debugging Machine Learning-based Autonomous Systems
测试和调试基于机器学习的自治系统
  • 批准号:
    RGPIN-2020-04035
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
RI: Small: Debugging Machine Visual Recognition via Humans in the Loop
RI:小型:通过人在循环中调试机器视觉识别
  • 批准号:
    1341772
  • 财政年份:
    2013
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Standard Grant
RI: Small: Debugging Machine Visual Recognition via Humans in the Loop
RI:小型:通过人在循环中调试机器视觉识别
  • 批准号:
    1115719
  • 财政年份:
    2011
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Standard Grant
HCC-Medium: End-user debugging of machine-learned programs
HCC-Medium:机器学习程序的最终用户调试
  • 批准号:
    0803487
  • 财政年份:
    2008
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了