Testing, Debugging and Repairing Machine Learning Software at the System Level

系统级测试、调试和修复机器学习软件

基本信息

  • 批准号:
    RGPIN-2021-02549
  • 负责人:
  • 金额:
    $ 3.86万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Machine learning (ML) has become the driving force of innovation in many application domains. However, current state-of-the-art ML software still suffers from quality issues. Different from traditional software, ML software adopts the data-driven programming paradigm. Instead of manually programming the decision logic (e.g., in form of source code), the decision logic of the ML software is automatically learned via training and encodes in a model (e.g., neural network). An ML model is often difficult to interpret and understand, calling for novel quality assurance (QA) methods. In practice, an ML model is often not used standalone but integrated as a component into a larger system, including both traditional software and ML models. While some recent progress is made on testing and analysis ML models, systematic research of QA for ML software at the system level is still largely untouched so far. Quality assurance at the ML system level is challenging and requires considering the components of ML models, traditional software, and their interactions. In particular, 1) The ML model behaviors are often difficult to understand. What is the role of an ML model and how its incorrect behaviors impact the whole system? 2) How to effectively detect the defects in the huge testing space of an ML software system? 3) With the error triggering tests, how to debug and identify the defect modules? 4) For system incorrect behaviors caused by ML models, how to repair them to improve system quality? This research program aims to address these challenges and propose novel methods of testing, debugging, and repairing for ML-driven software at the system level, providing key quality assurance supports to establish trustworthy intelligent software. 1) First, I plan to perform a large-scale empirical study to systematically investigate roles and defect impacts of ML models in state-of-the-art ML systems. 2) Then, I will propose an effective testing framework to detect the potential defects of ML at the system level. 3) With the found defects, I plan to design automated debugging techniques to localize the potentially incorrect modules. 4) Regarding the system defects introduced by ML models, I will further propose automated repairing methods to enhance the ML system quality. Large-scale experiments on open source and industrial ML software systems will be conducted to evaluate the advantage, practical value and limitation of proposed techniques. This outcome of this research will originally provide an initial set of key methods to detect, debug, and repair ML software at the system level, which can greatly accelerate the ML system development process with better quality assurance support, potentially impacting many industrial domains. This program will train nine highly qualified personnel (HQP) and provide them with the equity, diversity and inclusivity (EDI) platform to participate and contribute to the state-of-the-art intelligent software engineering research.
机器学习(ML)已经成为许多应用领域创新的驱动力。然而,目前最先进的ML软件仍然存在质量问题。与传统软件不同,ML软件采用数据驱动的编程范式。代替手动编程决策逻辑(例如,以源代码的形式),ML软件的决策逻辑通过训练自动学习并编码在模型中(例如,神经网络)。ML模型通常很难解释和理解,需要新的质量保证(QA)方法。在实践中,ML模型通常不会单独使用,而是作为组件集成到更大的系统中,包括传统软件和ML模型。虽然最近在测试和分析ML模型方面取得了一些进展,但到目前为止,在系统级上对ML软件的QA的系统研究仍然很少。ML系统级别的质量保证具有挑战性,需要考虑ML模型的组件、传统软件及其交互。特别是,1)ML模型的行为通常很难理解。ML模型的作用是什么?它的不正确行为如何影响整个系统?2)如何在ML软件系统庞大的测试空间中有效地检测缺陷?3)有了错误触发测试,如何调试和识别缺陷模块?4)对于ML模型导致的系统错误行为,如何修复它们以提高系统质量?本研究计划旨在解决这些挑战,并提出新的方法,测试,调试和修复ML驱动的软件在系统级,提供关键的质量保证支持,建立值得信赖的智能软件。1)首先,我计划进行一项大规模的实证研究,以系统地调查ML模型在最先进的ML系统中的作用和缺陷影响。2)然后,我将提出一个有效的测试框架来检测ML在系统级的潜在缺陷。3)有了发现的缺陷,我计划设计自动化调试技术来本地化可能不正确的模块。4)对于ML模型引入的系统缺陷,我将进一步提出自动修复方法,以提高ML系统的质量。 将对开源和工业ML软件系统进行大规模实验,以评估所提出技术的优势,实用价值和局限性。这项研究的成果最初将提供一套在系统级检测、调试和修复机器学习软件的初始关键方法,这可以大大加快机器学习系统的开发过程,并提供更好的质量保证支持,可能会影响许多工业领域。该计划将培养9名高素质人才(HQP),并为他们提供公平,多样性和包容性(EDI)平台,以参与并为最先进的智能软件工程研究做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ma, Lei其他文献

Reaction Performance of Hydrogen from Aqueous-Phase Reforming of Methanol or Ethanol in Hydrogenation of Phenol
甲醇或乙醇水相重整制氢苯酚加氢反应性能
High-voltage Synchronization System with High Noise-immunity
具有高抗噪性的高压同步系统
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cai, Xin-Jing;Zou, Xiao-Bing;Wang, Xin-Xin;Ma, Lei;Wang, Peng;Jiang, Wei-Hua
  • 通讯作者:
    Jiang, Wei-Hua
DYNAMIC PROPERTIES OF THE LARGE-DETUNING CAVITY QED SYSTEM IN THE PRESENCE OF CAVITY DECAY
存在腔衰变的大失谐腔 QED 系统的动态特性
  • DOI:
    10.1142/s021798490801714x
  • 发表时间:
    2008-10
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Ma, Lei;Gao, Cheng-Yuan;Liu, Jin-Ming
  • 通讯作者:
    Liu, Jin-Ming
Analysis of basic pentacysteine6 transcription factor involved in abiotic stress response in Arabidopsis thaliana.
  • DOI:
    10.3389/fgene.2023.1097381
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zhang, Zhijun;Zhang, Tingting;Ma, Lei
  • 通讯作者:
    Ma, Lei
Identification of the intersegmental plane by arterial ligation method during thoracoscopic segmentectomy.
  • DOI:
    10.1186/s13019-022-02011-5
  • 发表时间:
    2022-11-04
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    He, Haiqi;Zhao, Heng;Ma, Lei;Fan, Kun;Feng, Jinteng;Zhao, Rui;Wen, Xiaopeng;Zhang, Jia;Wu, Qifei;Fu, Junke;Zhang, Guangjian
  • 通讯作者:
    Zhang, Guangjian

Ma, Lei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ma, Lei', 18)}}的其他基金

Testing, Debugging and Repairing Machine Learning Software at the System Level
系统级测试、调试和修复机器学习软件
  • 批准号:
    RGPAS-2021-00034
  • 财政年份:
    2022
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Testing, Debugging and Repairing Machine Learning Software at the System Level
系统级测试、调试和修复机器学习软件
  • 批准号:
    RGPIN-2021-02549
  • 财政年份:
    2022
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual
Testing, Debugging and Repairing Machine Learning Software at the System Level
系统级测试、调试和修复机器学习软件
  • 批准号:
    RGPAS-2021-00034
  • 财政年份:
    2021
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Testing, Debugging and Repairing Machine Learning Software at the System Level
系统级测试、调试和修复机器学习软件
  • 批准号:
    DGECR-2021-00019
  • 财政年份:
    2021
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

CAREER: FET: A Top-down Compilation Infrastructure for Optimization and Debugging in the Noisy Intermediate Scale Quantum (NISQ) era
职业:FET:用于噪声中级量子 (NISQ) 时代优化和调试的自上而下的编译基础设施
  • 批准号:
    2421059
  • 财政年份:
    2024
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Neural Testing and Debugging of Software
职业:推进软件的神经测试和调试
  • 批准号:
    2238045
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Continuing Grant
An Individual Investigator Development Plan to Improve Undergraduate Debugging Skills and Mindset
提高本科生调试技能和心态的个人研究者发展计划
  • 批准号:
    2321255
  • 财政年份:
    2023
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Standard Grant
Utilizing Artificial Intelligence to Improve the Testing and Debugging of Concurrent Software
利用人工智能改进并发软件的测试和调试
  • 批准号:
    RGPIN-2018-06588
  • 财政年份:
    2022
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual
Testing and Debugging Machine Learning-based Autonomous Systems
测试和调试基于机器学习的自治系统
  • 批准号:
    RGPIN-2020-04035
  • 财政年份:
    2022
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual
Inferring rich input structure for software debugging and defence
推断丰富的输入结构用于软件调试和防御
  • 批准号:
    RGPIN-2020-06394
  • 财政年份:
    2022
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual
Testing, Debugging and Repairing Machine Learning Software at the System Level
系统级测试、调试和修复机器学习软件
  • 批准号:
    RGPAS-2021-00034
  • 财政年份:
    2022
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
DIADEM: debugging made dependable and measurable
DIADEM:调试变得可靠且可衡量
  • 批准号:
    EP/W012308/1
  • 财政年份:
    2022
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Research Grant
Monitoring and Debugging of High Performance Distributed Heterogeneous Cloud Applications
高性能分布式异构云应用的监控和调试
  • 批准号:
    554158-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Alliance Grants
Testing, Debugging and Repairing Machine Learning Software at the System Level
系统级测试、调试和修复机器学习软件
  • 批准号:
    RGPIN-2021-02549
  • 财政年份:
    2022
  • 资助金额:
    $ 3.86万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了