Statistical Estimation under Nonlinear Algebraic Constraints
非线性代数约束下的统计估计
基本信息
- 批准号:RGPIN-2020-04607
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning and artificial intelligence are all around us: new algorithms drive cars, detect melanoma, perform automated surgeries, and are used for scientific discovery. Now, more than ever, there is an urgent need for rigorous understanding and performance guarantees so that we can rely on these new technologies. Many inference questions in machine learning are nonlinear, and the long tradition of linear models in statistics may no longer be applicable. For example, latent variable models correspond to various notions of low-rank structure in tensors; more generally, latent variable graphical models correspond to more complicated tensor decompositions in the discrete case, and other highly nonlinear structure in the continuous case. Additionally, non-parametric models, such as strongly positively dependent random variables, are defined via nonlinear polynomial inequalities. Inference for such models often suffers from high computational and sample size complexity. Designing methods for inference and obtaining convergence guarantees requires a thorough understanding of the underlying nonlinear structure. My research program is on statistical inference, model selection, and testing for models given by nonlinear algebraic constraints. Each of my long-term projects involves problems that are grounded in different fields: statistics, optimization, nonlinear algebra, and combinatorics. This research program consists of three main projects. (1) Total positivity is a powerful notion important in both statistics (where it implies a strong form of positive dependence of random variables) and optimization (where it facilitates dual certificate construction - in problems like super-resolution imaging, for example). Total positivity is defined via polynomial inequalities and raises a multitude of open problems across diverse fields, from statistical inference to discrete geometry. (2) Structured tensor decompositions lie at the core of many statistical and scientific problems (such as discrete latent variable models and blind source separation), however, they pose many computational and theoretical challenges. I intend to design algorithms for fast structured decompositions, to study geometric properties of spaces of tensors with certain structure, and to explore new types of tensor decompositions. (3) Causal inference in the presence of hidden variables captures real-world interaction of observed quantities, however it poses a variety of open problems. Here I propose to work on model description and equivalence, as well as model selection problems. In both the discrete and Gaussian cases, the models are semialgebraic sets. Solving the above problems will call for algebraic and combinatorial techniques. To execute this interdisciplinary research program I plan to work with students and young researchers with various skills and interests. Our work together will give each of them a strong foundation for a career in academia or industry.
机器学习和人工智能就在我们身边:新的算法可以驾驶汽车、检测黑色素瘤、进行自动化手术,还可以用于科学发现。现在,比以往任何时候都迫切需要严格的理解和性能保证,以便我们能够依赖这些新技术。机器学习中的许多推理问题都是非线性的,统计学中线性模型的悠久传统可能不再适用。例如,潜变量模型对应于张量中的低秩结构的各种概念;更一般地说,潜在变量图形模型在离散情况下对应更复杂的张量分解,在连续情况下对应其他高度非线性结构。此外,非参数模型,如强正相关随机变量,是通过非线性多项式不等式定义的。这类模型的推理通常具有较高的计算复杂度和样本量复杂度。设计推理和获得收敛保证的方法需要对潜在的非线性结构有透彻的了解。我的研究项目是统计推断,模型选择,以及非线性代数约束下模型的检验。我的每一个长期项目都涉及到基于不同领域的问题:统计、优化、非线性代数和组合学。这个研究计划包括三个主要项目。(1)总正性是一个强大的概念,在统计学(它意味着随机变量的强正依赖形式)和优化(它促进双证书构建-例如在超分辨率成像等问题中)中都很重要。总正性是通过多项式不等式定义的,并在不同的领域提出了大量的开放问题,从统计推断到离散几何。(2)结构化张量分解是许多统计和科学问题(如离散潜变量模型和盲源分离)的核心,然而,它们带来了许多计算和理论挑战。我打算设计快速结构化分解的算法,研究具有一定结构的张量空间的几何性质,探索新的张量分解类型。(3)存在隐变量的因果推理捕获了观测量的真实相互作用,但它提出了各种开放问题。在这里,我建议研究模型描述和等价,以及模型选择问题。在离散和高斯情况下,模型都是半代数集。解决上述问题需要用到代数和组合技术。为了执行这个跨学科的研究项目,我计划与具有不同技能和兴趣的学生和年轻研究人员合作。我们的合作将为他们每个人在学术界或工业界的职业生涯打下坚实的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robeva, Elina其他文献
Optimal rates for estimation of two-dimensional totally positive distributions
二维完全正分布估计的最佳速率
- DOI:
10.1214/20-ejs1729 - 发表时间:
2020 - 期刊:
- 影响因子:1.1
- 作者:
Hütter, Jan-Christian;Mao, Cheng;Rigollet, Philippe;Robeva, Elina - 通讯作者:
Robeva, Elina
Estimation of Monge matrices
Monge 矩阵的估计
- DOI:
10.3150/20-bej1215 - 发表时间:
2020 - 期刊:
- 影响因子:1.5
- 作者:
Hütter, Jan-Christian;Mao, Cheng;Rigollet, Philippe;Robeva, Elina - 通讯作者:
Robeva, Elina
ORTHOGONAL DECOMPOSITION OF SYMMETRIC TENSORS
- DOI:
10.1137/140989340 - 发表时间:
2016-01-01 - 期刊:
- 影响因子:1.5
- 作者:
Robeva, Elina - 通讯作者:
Robeva, Elina
Nested covariance determinants and restricted trek separation in Gaussian graphical models
高斯图模型中的嵌套协方差行列式和受限跋涉分离
- DOI:
10.3150/19-bej1179 - 发表时间:
2020 - 期刊:
- 影响因子:1.5
- 作者:
Drton, Mathias;Robeva, Elina;Weihs, Luca - 通讯作者:
Weihs, Luca
Robeva, Elina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robeva, Elina', 18)}}的其他基金
Statistical Estimation under Nonlinear Algebraic Constraints
非线性代数约束下的统计估计
- 批准号:
RGPIN-2020-04607 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Statistical Estimation under Nonlinear Algebraic Constraints
非线性代数约束下的统计估计
- 批准号:
DGECR-2020-00338 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Launch Supplement
Statistical Estimation under Nonlinear Algebraic Constraints
非线性代数约束下的统计估计
- 批准号:
RGPIN-2020-04607 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Non-parametric estimation under covariate shift: From fundamental bounds to efficient algorithms
协变量平移下的非参数估计:从基本界限到高效算法
- 批准号:
2311072 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
AMPS: Scalable Methods for Real-time Estimation of Power Systems under Uncertainty
AMPS:不确定性下电力系统实时估计的可扩展方法
- 批准号:
2229495 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
CAREER: New Foundations for Multi-Fidelity Prediction, Estimation, and Learning Under Uncertainty in Dynamical Systems
职业生涯:动态系统不确定性下多保真度预测、估计和学习的新基础
- 批准号:
2238913 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Research and development on channel estimation method and performance improvement under ultra-multi-connection wireless environment
超多连接无线环境下信道估计方法及性能提升研究进展
- 批准号:
22K04085 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Incidence regression, variable selection and conditional density estimation from prevalent cohort survival data under stochastic constraints
随机约束下流行队列生存数据的发生率回归、变量选择和条件密度估计
- 批准号:
RGPIN-2018-05618 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Development of radiation source and shielding material shape distribution estimation technology under complicated radiation field
复杂辐射场下辐射源及屏蔽材料形状分布估计技术开发
- 批准号:
22K04119 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical Estimation under Nonlinear Algebraic Constraints
非线性代数约束下的统计估计
- 批准号:
RGPIN-2020-04607 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Variance estimation under multiple imputation for missing survey data
缺失调查数据多重插补下的方差估计
- 批准号:
574963-2022 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
University Undergraduate Student Research Awards
Incidence regression, variable selection and conditional density estimation from prevalent cohort survival data under stochastic constraints
随机约束下流行队列生存数据的发生率回归、变量选择和条件密度估计
- 批准号:
RGPIN-2018-05618 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Topics in Threshold Models: Efficient Procedures under Endogeneity in Regression Discontinuity Designs and Distributed and Robust Estimation of Change-Points
阈值模型主题:回归间断设计中内生性下的有效程序以及变化点的分布式鲁棒估计
- 批准号:
2113364 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant