Variational studies of strongly-correlated systems
强相关系统的变分研究
基本信息
- 批准号:RGPIN-2020-04634
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research program is focused on developing accurate, yet computationally efficient, variational approximations for answering the key questions that arise in the study of strongly correlated systems, i.e. how to predict: (i) the characteristics of the quasiparticle that forms when a charge carrier becomes "dressed'' by a cloud of excitations such as phonons, magnons, plasmons, etc. In certain cases, this quasiparticle is called a polaron; (ii) the characteristics of the effective interactions arising between quasiparticles through exchange of excitations between their clouds; and (iii) their combined influence on the properties of the host material. There is currently no general theoretical framework for dealing with such problems, hindering progress in identifying optimal materials for technological uses. Our long-term objective is to develop such a framework. Our work is based on our unique approach of identifying the most important real-space configurations that contribute to the structure of the dressing clouds, and keeping their contributions to all orders. We demonstrated that this leads to very accurate predictions for single polarons and bipolarons even for strong couplings, difficult to study by other means. In the next 5 years we will further expand the capabilities of our method, and use it to study: Project 1: the effects of strong carrier-boson coupling in systems with low carrier concentrations; Project 2: the effects of strong carrier-boson coupling in systems at and near half-filling; Project 3: properties of polarons at finite temperatures; Project 4: properties of polarons in driven systems; Project 5: extensions of our variational approach to strongly correlated electronic Hamiltonians. The steady progress of my research program from the study of single polarons and bipolarons, to the study of systems with finite carrier concentrations, shows that this program has reached a mature stage where it will have a ground-breaking impact: We are currently the only group in the world able to accurately and efficiently solve the problems included in Project 1: the Migdal theorem is not valid here and numerical simulations are difficult at very low densities as they require considering very large systems. We are also the only group currently able to answer the questions of Project 3. Here, state-of-the-art numerical studies are limited to chains with up to 10 sites, whereas we can study any infinite lattices. These are low-risk, high reward projects. In contrast, the high-risk, high reward Projects 2, 4 and 5 focus on expanding our expertise to an even wider class of relevant problems. All these project offer excellent training to undergraduate and graduate students and postdoctoral fellows, because they combine honing one's physical intuition (in finding the configurations important to the clouds), analytical abilities (deriving the resulting equations), programming abilities (coding the solution) and presentation skills.
我的研究计划专注于开发准确,但计算效率高的变分近似,以回答强相关系统研究中出现的关键问题,即如何预测:(i)当电荷载流子被诸如声子、磁振子、等离子体激元等的激发云“修饰”时形成的准粒子的特性。在某些情况下,这种准粒子被称为极化子;(ii)通过准粒子云之间的激发交换而产生的准粒子之间的有效相互作用的特性;以及(iii)它们对主体材料的性质的组合影响。目前还没有处理这些问题的一般理论框架,阻碍了在确定技术用途的最佳材料方面取得进展。我们的长期目标是建立这样一个框架。我们的工作是基于我们独特的方法,确定最重要的真实空间的配置,有助于敷料云的结构,并保持其贡献的所有orders. We证明,这导致非常准确的预测单极化子和双极化子,即使强耦合,难以通过其他手段研究。在接下来的5年里,我们将进一步扩展我们的方法的能力,并使用它来研究:项目1:低载流子浓度系统中强载流子-玻色子耦合的影响;项目2:半填充和接近半填充系统中强载流子-玻色子耦合的影响;项目3:有限温度下极化子的性质;项目4:驱动系统中极化子的性质;项目5:我们的变分方法强关联电子哈密顿的扩展。我的研究计划从单极化子和双极化子的研究,到有限载流子浓度系统的研究,稳步进展,表明该计划已经达到了一个成熟的阶段,它将产生突破性的影响:我们是目前世界上唯一能够准确有效地解决项目1中包括的问题的团队:米格达尔定理在这里不成立,并且在非常低的密度下进行数值模拟很困难,因为它们需要考虑非常大的系统。我们也是目前唯一能够回答项目3问题的小组。在这里,最先进的数值研究仅限于具有多达10个站点的链,而我们可以研究任何无限网格。这些都是低风险、高回报的项目。相比之下,高风险、高回报的项目2、4和5侧重于将我们的专业知识扩展到更广泛的相关问题类别。所有这些项目都为本科生、研究生和博士后研究员提供了极好的培训,因为它们结合了联合收割机磨练人的物理直觉(在寻找对云重要的配置方面),分析能力(推导结果方程)、编程能力(编码解决方案)和表达技巧。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Berciu, Mona其他文献
Electronic polarons and bipolarons in iron-based superconductors: The role of anions
- DOI:
10.1103/physrevb.79.214507 - 发表时间:
2009-06-01 - 期刊:
- 影响因子:3.7
- 作者:
Berciu, Mona;Elfimov, Ilya;Sawatzky, George A. - 通讯作者:
Sawatzky, George A.
Bipolaron liquids at strong Peierls electron-phonon couplings
强 Peierls 电子声子耦合下的双极子液体
- DOI:
10.1103/physrevb.104.l201109 - 发表时间:
2021 - 期刊:
- 影响因子:3.7
- 作者:
Nocera, Alberto;Sous, John;Feiguin, Adrian E.;Berciu, Mona - 通讯作者:
Berciu, Mona
Polaron Formation in the Presence of Rashba Spin-Orbit Coupling: Implications for Spintronics
- DOI:
10.1103/physrevlett.102.186403 - 发表时间:
2009-05-08 - 期刊:
- 影响因子:8.6
- 作者:
Covaci, Lucian;Berciu, Mona - 通讯作者:
Berciu, Mona
The dynamics of a doped hole in a cuprate is not controlled by spin fluctuations
- DOI:
10.1038/nphys3130 - 发表时间:
2014-12-01 - 期刊:
- 影响因子:19.6
- 作者:
Ebrahimnejad, Hadi;Sawatzky, George A.;Berciu, Mona - 通讯作者:
Berciu, Mona
Systematic improvement of the momentum average approximation for the Green's function of a Holstein polaron
- DOI:
10.1103/physrevb.76.165109 - 发表时间:
2007-10-01 - 期刊:
- 影响因子:3.7
- 作者:
Berciu, Mona;Goodvin, Glen L. - 通讯作者:
Goodvin, Glen L.
Berciu, Mona的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Berciu, Mona', 18)}}的其他基金
Variational studies of strongly-correlated systems
强相关系统的变分研究
- 批准号:
RGPIN-2020-04634 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Variational studies of strongly-correlated systems
强相关系统的变分研究
- 批准号:
RGPIN-2020-04634 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Nonperturbative methods for studying dressed quasiparticles and their effective interactions in strongly-coupled systems
研究强耦合系统中修饰准粒子及其有效相互作用的非微扰方法
- 批准号:
RGPIN-2015-03867 - 财政年份:2019
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Nonperturbative methods for studying dressed quasiparticles and their effective interactions in strongly-coupled systems
研究强耦合系统中修饰准粒子及其有效相互作用的非微扰方法
- 批准号:
RGPIN-2015-03867 - 财政年份:2018
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Nonperturbative methods for studying dressed quasiparticles and their effective interactions in strongly-coupled systems
研究强耦合系统中修饰准粒子及其有效相互作用的非微扰方法
- 批准号:
RGPIN-2015-03867 - 财政年份:2017
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Nonperturbative methods for studying dressed quasiparticles and their effective interactions in strongly-coupled systems
研究强耦合系统中修饰准粒子及其有效相互作用的非微扰方法
- 批准号:
RGPIN-2015-03867 - 财政年份:2016
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Nonperturbative methods for studying dressed quasiparticles and their effective interactions in strongly-coupled systems
研究强耦合系统中修饰准粒子及其有效相互作用的非微扰方法
- 批准号:
RGPIN-2015-03867 - 财政年份:2015
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Investigations of dressed quasiparticles
穿戴准粒子的研究
- 批准号:
251480-2010 - 财政年份:2014
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Investigations of dressed quasiparticles
穿戴准粒子的研究
- 批准号:
251480-2010 - 财政年份:2013
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Investigations of dressed quasiparticles
穿戴准粒子的研究
- 批准号:
396070-2010 - 财政年份:2012
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
脂滴聚集型小胶质细胞介导的髓鞘病变促进小鼠抑郁样行为及其机制研究
- 批准号:82371528
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
星形胶质细胞介导的髓鞘吞噬参与慢性脑低灌注白质损伤的机制研究
- 批准号:82371307
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Non-perturbative studies of strongly correlated quantum many-body systems
强相关量子多体系统的非微扰研究
- 批准号:
RGPIN-2018-05502 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Variational studies of strongly-correlated systems
强相关系统的变分研究
- 批准号:
RGPIN-2020-04634 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Synthesis and Studies of Single-Molecule Magnets Incorporating Strongly Coupled Two-Coordinate Metal Building Units
强耦合二配位金属构建单元单分子磁体的合成与研究
- 批准号:
2138017 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Fellowship Award
Ultra-low temperature scanning-tunneling microscopy studies on bottom-up strongly correlated electron systems
自下而上强相关电子系统的超低温扫描隧道显微镜研究
- 批准号:
22K18696 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Theoretical studies of quantum magnets and strongly correlated metals
量子磁体和强相关金属的理论研究
- 批准号:
RGPIN-2020-05615 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Studies on extreme value theory for strongly correlated random fields
强相关随机场极值理论研究
- 批准号:
22K13927 - 财政年份:2022
- 资助金额:
$ 3.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theoretical studies of quantum magnets and strongly correlated metals
量子磁体和强相关金属的理论研究
- 批准号:
RGPIN-2020-05615 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
Theoretical studies of superconducting states with multiple phases in strongly correlated electron materials
强相关电子材料多相超导态的理论研究
- 批准号:
21K03455 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative studies of strongly correlated quantum many-body systems
强相关量子多体系统的非微扰研究
- 批准号:
RGPIN-2018-05502 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Discovery Grants Program - Individual
In-situ NMR studies of strongly correlated electron systems under light illumination
光照射下强相关电子系统的原位核磁共振研究
- 批准号:
21K18897 - 财政年份:2021
- 资助金额:
$ 3.64万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)