Eigenfunction Asymptotics and Quantum Chaos

本征函数渐进和量子混沌

基本信息

  • 批准号:
    RGPIN-2020-04700
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Summary of Proposal (required) Broadly speaking, my research is focused on the study of eigenfunctions of Schrodinger operators in the semiclassical limit. I am primarily interested in the asymptotic growth and accumulation properties as well as the behaviour of the nodal and critical sets. I propose to continue my work in this field and more specifically, I plan to focus on two different (but related) lines of research: 1) EIGENFUNCTION RESTRICTION BOUNDS: Let $(M,g)$ be a compact manifold with Laplace-Beltrami operator $-\Delta$ and $\phi_{\lambda}$ be an $L^2$-normalized eigenfunction with eigenvalue $\lambda^2$ and $H \subset M$ a smooth hypersurface. The problem of estimating $L^2$-restriction bounds $ \| \phi_{\lambda} \|_{L^2(H)}$ from above and below has many important applications in the study of eigenfunction nodal (i.e. zero) and critical sets [TZ1, ET, JZ, TZ2] (a) Lower bounds: Proving unique continuation (i.e. ``goodness" bounds) for eigenfunction restrictions of the form $ \| \phi_{\lambda} \|_{L^2(H)} \geq e^{-C \lambda}$ for all $\phi_{\lambda}$ with $\lambda \geq \lambda_0$ is a very important ingredient in establishing upper bounds for nodal intersections with the hypersurface H. Recently, in joint work with S. Zelditch [TZ2], we have made important progress on this problem. However, the question of whether such estimates are generically satisfied in a general setting remains open. I propose to investigate this in the case of Dirichlet eigenfunctions on a domain $\Omega$ in the case of hypersurfaces $H$ close to the boundary $\partial \Omega. (b) Upper bounds: Improvements in universal upper bounds [BGT] for $\| \phi_{\lambda} \|_{L^2(H)|$ are also central to the study of eigenfunction oscillations. In particular, the question of obtaining improvements for hypersurfaces along the boundary is of particular importance. Recently in [CT], we have established improvements in the case where $H \subset \partial \Omega$ is totally-geodesic and $\Omega$ is a piecewise-smooth convex planar domain. I propose to extend these results to more general manifolds with boundary. 2) NODAL STRUCTURE OF INTERIOR STEKLOV EIGENFUNCTIONS Let $\Omega$ be a compact, smooth manifold with boundary $\partial \Omega = M.$ Recently, there has a great deal of activity related to the spectral asymptotics of the associated Dirichlet-to-Neumann (DtN)  or Steklov operator and the study of corresponding eigenfunction nodal sets.  In joint work with Polterovich and Sher [PST], we have recently proved the sharp analogue of the Yau conjecture for nodal sets for interior Steklov eigenfunctions in the case when $\Omega$ is a Riemann surface with real-anaytic boundary. In higher dimensions, very little  is known in the case of lower bounds. I propose to investigate this question using recent results with Galkowski [GT] on sharp pointwise bounds for Steklov eigenfunctions.
Summary of Proposal (required) Broadly speaking, my research is focused on the study of eigenfunctions of Schrodinger operators in the semiclassical limit. I am primarily interested in the asymptotic growth and accumulation properties as well as the behaviour of the nodal and critical sets. I propose to continue my work in this field and more specifically, I plan to focus on two different (but related) lines of research: 1) EIGENFUNCTION RESTRICTION BOUNDS: Let $(M,g)$ be a compact manifold with Laplace-Beltrami operator $-\Delta$ and $\phi_{\lambda}$ be an $L^2$-normalized eigenfunction with eigenvalue $\lambda^2$ and $H \subset M$ a smooth hypersurface. The problem of estimating $L^2$-restriction bounds $ \| \phi_{\lambda} \|_{L^2(H)}$ from above and below has many important applications in the study of eigenfunction nodal (i.e. zero) and critical sets [TZ1, ET, JZ, TZ2] (a) Lower bounds: Proving unique continuation (i.e. ``goodness" bounds) for eigenfunction restrictions of the form $ \| \phi_{\lambda} \|_{L^2(H)} \geq e^{-C \lambda}$ for all $\phi_{\lambda}$ with $\lambda \geq \lambda_0$ is a very important ingredient in establishing upper bounds for nodal intersections with the hypersurface H. Recently, in joint work with S. Zelditch [TZ2], we have made important progress on this problem. However, the question of whether such estimates are generically satisfied in a general setting remains open. I propose to investigate this in the case of Dirichlet eigenfunctions on a domain $\Omega$ in the case of hypersurfaces $H$ close to the boundary $\partial \Omega. (b) Upper bounds: Improvements in universal upper bounds [BGT] for $\| \phi_{\lambda} \|_{L^2(H)|$ are also central to the study of eigenfunction oscillations. In particular, the question of obtaining improvements for hypersurfaces along the boundary is of particular importance. Recently in [CT], we have established improvements in the case where $H \subset \partial \Omega$ is totally-geodesic and $\Omega$ is a piecewise-smooth convex planar domain. I propose to extend these results to more general manifolds with boundary. 2) NODAL STRUCTURE OF INTERIOR STEKLOV EIGENFUNCTIONS Let $\Omega$ be a compact, smooth manifold with boundary $\partial \Omega = M.$ Recently, there has a great deal of activity related to the spectral asymptotics of the associated Dirichlet-to-Neumann (DtN)  or Steklov operator and the study of corresponding eigenfunction nodal sets.  In joint work with Polterovich and Sher [PST], we have recently proved the sharp analogue of the Yau conjecture for nodal sets for interior Steklov eigenfunctions in the case when $\Omega$ is a Riemann surface with real-anaytic boundary. In higher dimensions, very little  is known in the case of lower bounds. I propose to investigate this question using recent results with Galkowski [GT] on sharp pointwise bounds for Steklov eigenfunctions.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Toth, John其他文献

Toth, John的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Toth, John', 18)}}的其他基金

Eigenfunction Asymptotics and Quantum Chaos
本征函数渐进和量子混沌
  • 批准号:
    RGPIN-2020-04700
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Eigenfunction Asymptotics and Quantum Chaos
本征函数渐进和量子混沌
  • 批准号:
    RGPIN-2020-04700
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
  • 批准号:
    RGPIN-2015-04979
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
  • 批准号:
    RGPIN-2015-04979
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
  • 批准号:
    RGPIN-2015-04979
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
  • 批准号:
    RGPIN-2015-04979
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
  • 批准号:
    RGPIN-2015-04979
  • 财政年份:
    2015
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Eigenfunction asymptotics on Riemannian manifolds
黎曼流形上的本征函数渐近
  • 批准号:
    170280-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Eigenfunction asymptotics on Riemannian manifolds
黎曼流形上的本征函数渐近
  • 批准号:
    170280-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Eigenfunction asymptotics on Riemannian manifolds
黎曼流形上的本征函数渐近
  • 批准号:
    170280-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Eigenfunction Asymptotics and Quantum Chaos
本征函数渐进和量子混沌
  • 批准号:
    RGPIN-2020-04700
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Eigenfunction Asymptotics and Quantum Chaos
本征函数渐进和量子混沌
  • 批准号:
    RGPIN-2020-04700
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics of Quantum Invariants
量子不变量的渐近
  • 批准号:
    2005656
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Continuing Grant
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
  • 批准号:
    RGPIN-2015-04979
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
  • 批准号:
    RGPIN-2015-04979
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
  • 批准号:
    RGPIN-2015-04979
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了