Eigenfunction Asymptotics and Quantum Chaos
本征函数渐进和量子混沌
基本信息
- 批准号:RGPIN-2020-04700
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Summary of Proposal (required) Broadly speaking, my research is focused on the study of eigenfunctions of Schrodinger operators in the semiclassical limit. I am primarily interested in the asymptotic growth and accumulation properties as well as the behaviour of the nodal and critical sets. I propose to continue my work in this field and more specifically, I plan to focus on two different (but related) lines of research: 1) EIGENFUNCTION RESTRICTION BOUNDS: Let $(M,g)$ be a compact manifold with Laplace-Beltrami operator $-\Delta$ and $\phi_{\lambda}$ be an $L^2$-normalized eigenfunction with eigenvalue $\lambda^2$ and $H \subset M$ a smooth hypersurface. The problem of estimating $L^2$-restriction bounds $ \| \phi_{\lambda} \|_{L^2(H)}$ from above and below has many important applications in the study of eigenfunction nodal (i.e. zero) and critical sets [TZ1, ET, JZ, TZ2] (a) Lower bounds: Proving unique continuation (i.e. ``goodness" bounds) for eigenfunction restrictions of the form $ \| \phi_{\lambda} \|_{L^2(H)} \geq e^{-C \lambda}$ for all $\phi_{\lambda}$ with $\lambda \geq \lambda_0$ is a very important ingredient in establishing upper bounds for nodal intersections with the hypersurface H. Recently, in joint work with S. Zelditch [TZ2], we have made important progress on this problem. However, the question of whether such estimates are generically satisfied in a general setting remains open. I propose to investigate this in the case of Dirichlet eigenfunctions on a domain $\Omega$ in the case of hypersurfaces $H$ close to the boundary $\partial \Omega. (b) Upper bounds: Improvements in universal upper bounds [BGT] for $\| \phi_{\lambda} \|_{L^2(H)|$ are also central to the study of eigenfunction oscillations. In particular, the question of obtaining improvements for hypersurfaces along the boundary is of particular importance. Recently in [CT], we have established improvements in the case where $H \subset \partial \Omega$ is totally-geodesic and $\Omega$ is a piecewise-smooth convex planar domain. I propose to extend these results to more general manifolds with boundary. 2) NODAL STRUCTURE OF INTERIOR STEKLOV EIGENFUNCTIONS Let $\Omega$ be a compact, smooth manifold with boundary $\partial \Omega = M.$ Recently, there has a great deal of activity related to the spectral asymptotics of the associated Dirichlet-to-Neumann (DtN) or Steklov operator and the study of corresponding eigenfunction nodal sets. In joint work with Polterovich and Sher [PST], we have recently proved the sharp analogue of the Yau conjecture for nodal sets for interior Steklov eigenfunctions in the case when $\Omega$ is a Riemann surface with real-anaytic boundary. In higher dimensions, very little is known in the case of lower bounds. I propose to investigate this question using recent results with Galkowski [GT] on sharp pointwise bounds for Steklov eigenfunctions.
Summary of Proposal (required) Broadly speaking, my research is focused on the study of eigenfunctions of Schrodinger operators in the semiclassical limit. I am primarily interested in the asymptotic growth and accumulation properties as well as the behaviour of the nodal and critical sets. I propose to continue my work in this field and more specifically, I plan to focus on two different (but related) lines of research: 1) EIGENFUNCTION RESTRICTION BOUNDS: Let $(M,g)$ be a compact manifold with Laplace-Beltrami operator $-\Delta$ and $\phi_{\lambda}$ be an $L^2$-normalized eigenfunction with eigenvalue $\lambda^2$ and $H \subset M$ a smooth hypersurface. The problem of estimating $L^2$-restriction bounds $ \| \phi_{\lambda} \|_{L^2(H)}$ from above and below has many important applications in the study of eigenfunction nodal (i.e. zero) and critical sets [TZ1, ET, JZ, TZ2] (a) Lower bounds: Proving unique continuation (i.e. ``goodness" bounds) for eigenfunction restrictions of the form $ \| \phi_{\lambda} \|_{L^2(H)} \geq e^{-C \lambda}$ for all $\phi_{\lambda}$ with $\lambda \geq \lambda_0$ is a very important ingredient in establishing upper bounds for nodal intersections with the hypersurface H. Recently, in joint work with S. Zelditch [TZ2], we have made important progress on this problem. However, the question of whether such estimates are generically satisfied in a general setting remains open. I propose to investigate this in the case of Dirichlet eigenfunctions on a domain $\Omega$ in the case of hypersurfaces $H$ close to the boundary $\partial \Omega. (b) Upper bounds: Improvements in universal upper bounds [BGT] for $\| \phi_{\lambda} \|_{L^2(H)|$ are also central to the study of eigenfunction oscillations. In particular, the question of obtaining improvements for hypersurfaces along the boundary is of particular importance. Recently in [CT], we have established improvements in the case where $H \subset \partial \Omega$ is totally-geodesic and $\Omega$ is a piecewise-smooth convex planar domain. I propose to extend these results to more general manifolds with boundary. 2) NODAL STRUCTURE OF INTERIOR STEKLOV EIGENFUNCTIONS Let $\Omega$ be a compact, smooth manifold with boundary $\partial \Omega = M.$ Recently, there has a great deal of activity related to the spectral asymptotics of the associated Dirichlet-to-Neumann (DtN) or Steklov operator and the study of corresponding eigenfunction nodal sets. In joint work with Polterovich and Sher [PST], we have recently proved the sharp analogue of the Yau conjecture for nodal sets for interior Steklov eigenfunctions in the case when $\Omega$ is a Riemann surface with real-anaytic boundary. In higher dimensions, very little is known in the case of lower bounds. I propose to investigate this question using recent results with Galkowski [GT] on sharp pointwise bounds for Steklov eigenfunctions.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Toth, John其他文献
Toth, John的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Toth, John', 18)}}的其他基金
Eigenfunction Asymptotics and Quantum Chaos
本征函数渐进和量子混沌
- 批准号:
RGPIN-2020-04700 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Eigenfunction Asymptotics and Quantum Chaos
本征函数渐进和量子混沌
- 批准号:
RGPIN-2020-04700 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
- 批准号:
RGPIN-2015-04979 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
- 批准号:
RGPIN-2015-04979 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
- 批准号:
RGPIN-2015-04979 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
- 批准号:
RGPIN-2015-04979 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
- 批准号:
RGPIN-2015-04979 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Eigenfunction asymptotics on Riemannian manifolds
黎曼流形上的本征函数渐近
- 批准号:
170280-2010 - 财政年份:2014
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Eigenfunction asymptotics on Riemannian manifolds
黎曼流形上的本征函数渐近
- 批准号:
170280-2010 - 财政年份:2013
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Eigenfunction asymptotics on Riemannian manifolds
黎曼流形上的本征函数渐近
- 批准号:
170280-2010 - 财政年份:2012
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Eigenfunction Asymptotics and Quantum Chaos
本征函数渐进和量子混沌
- 批准号:
RGPIN-2020-04700 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
- 批准号:
RGPIN-2019-06422 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
- 批准号:
RGPIN-2019-06422 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Eigenfunction Asymptotics and Quantum Chaos
本征函数渐进和量子混沌
- 批准号:
RGPIN-2020-04700 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
- 批准号:
RGPIN-2019-06422 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
- 批准号:
RGPIN-2019-06422 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
- 批准号:
RGPIN-2015-04979 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
- 批准号:
RGPIN-2015-04979 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Eigenfunction asymptotics and quantum chaos
本征函数渐进和量子混沌
- 批准号:
RGPIN-2015-04979 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual