Asymptotics of Quantum Invariants
量子不变量的渐近
基本信息
- 批准号:2005656
- 负责人:
- 金额:$ 21.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is part of the general field of 3-dimensional topology and geometry, which analyzes 3-dimensional spaces with a high level of complexity and includes the study of the knotting phenomena that occur for curves in three dimensions. The underlying problems often arise from practical applications in the three-dimensional world we live in, but also from more theoretical considerations in mathematical physics. The project investigates a surprising connection between two very different approaches to 3-dimensional topology. The first approach is very algebraic and involves so-called quantum invariants for knotted curves in 3-dimensional spaces. The second approach is more geometric and analytic, and uses the non-euclidean geometry of the 3-dimensional hyperbolic space. The Kashaev Volume Conjecture, experimentally verified on many examples but still without a mathematical proof guaranteeing that it holds in all cases, provides an unexpected connection between these two viewpoints. The award provides support for graduate students who will be involved in related research.More precisely, the Kashaev Volume Conjecture connects the asymptotics of the colored Jones polynomial of a knot to the hyperbolic volume of its complement. This tantalizing conjecture is now 25-year old, and supported by much heuristic and experimental evidence. However, the corresponding property has been rigorously proved for only a very small number of cases. The goal of the project is to develop various steps in a roadmap towards a proof of the Kashaev Volume Conjecture, with a special emphasis on its analytic subtleties. As a first step, the project is focused on a closely related conjecture for surface bundles over the circle, where the combinatorics of quantum invariants are more clearly connected to the geometry of the underlying manifold. The PI and his collaborators will attack this conjecture in the even more special case of punctured torus bundles, in an effort to be very concrete while tackling the analytic difficulties that arise in this context. The PI will then build on the experience, insights and technical expertise gathered in this first case to proceed with the next steps in the roadmap, one after the other.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目是三维拓扑学和几何学一般领域的一部分,它分析了具有高度复杂性的三维空间,并包括对三维曲线发生的打结现象的研究。潜在的问题通常来自我们生活的三维世界的实际应用,但也来自数学物理中更多的理论考虑。该项目研究了两种非常不同的三维拓扑方法之间令人惊讶的联系。第一种方法是非常代数和涉及所谓的量子不变量的打结曲线在3维空间。第二种方法是更多的几何和分析,并使用非欧几何的三维双曲空间。 卡沙耶夫体积猜想在许多例子中得到了实验验证,但仍然没有数学证明来保证它在所有情况下都成立,它在这两种观点之间提供了一种意想不到的联系。该奖项为将参与相关研究的研究生提供支持。更准确地说,Kashaev体积猜想将结的有色琼斯多项式的渐近性与其补数的双曲体积联系起来。这个诱人的猜想现在已经有25年的历史了,并得到了许多启发性和实验性证据的支持。然而,相应的财产已严格证明,只有极少数情况下。该项目的目标是在Kashaev体积猜想的证明路线图中开发各个步骤,特别强调其分析的微妙之处。作为第一步,该项目的重点是一个密切相关的猜想表面丛在圆,其中量子不变量的组合学更清楚地连接到几何的基础流形。PI和他的合作者将在更特殊的穿孔环面丛的情况下攻击这个猜想,在解决这种情况下出现的分析困难时,努力做到非常具体。PI将在第一个案例中收集的经验、见解和技术专业知识的基础上,一个接一个地推进路线图中的后续步骤。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis Bonahon其他文献
Variétés Hyperboliques À Géodésiques Arbitrairement Courtes
各种双曲线和大地仲裁法庭
- DOI:
10.1112/blms/20.3.255 - 发表时间:
1988 - 期刊:
- 影响因子:0.9
- 作者:
Francis Bonahon;Jean - 通讯作者:
Jean
Difféotopies des espaces lenticulaires
- DOI:
10.1016/0040-9383(83)90016-2 - 发表时间:
1983 - 期刊:
- 影响因子:0
- 作者:
Francis Bonahon - 通讯作者:
Francis Bonahon
Miraculous cancellations for quantum $SL_2$
量子 $SL_2$ 奇迹般取消
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Francis Bonahon - 通讯作者:
Francis Bonahon
Central elements in the $$\textrm{SL}_d$$ -skein algebra of a surface
- DOI:
10.1007/s00209-024-03559-9 - 发表时间:
2024-07-26 - 期刊:
- 影响因子:1.000
- 作者:
Francis Bonahon;Vijay Higgins - 通讯作者:
Vijay Higgins
Central elements in the $mathrm{SL}_d$-skein algebra of a surface
曲面的 $mathrm{SL}_d$-skein 代数中的中心元素
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Francis Bonahon;Vijay Higgins - 通讯作者:
Vijay Higgins
Francis Bonahon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis Bonahon', 18)}}的其他基金
Character Varieties and Quantum Invariants
字符种类和量子不变量
- 批准号:
1711297 - 财政年份:2017
- 资助金额:
$ 21.66万 - 项目类别:
Continuing Grant
Classical and quantum homomorphisms from discrete groups to Lie groups
从离散群到李群的经典和量子同态
- 批准号:
1406559 - 财政年份:2014
- 资助金额:
$ 21.66万 - 项目类别:
Continuing Grant
Character varieties of surfaces: classical and quantum aspects
表面的特征变化:经典和量子方面
- 批准号:
1105402 - 财政年份:2011
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
Classical and quantum hyperbolic geometry
经典和量子双曲几何
- 批准号:
0604866 - 财政年份:2006
- 资助金额:
$ 21.66万 - 项目类别:
Continuing Grant
Low-dimensional Topology and Geometry
低维拓扑和几何
- 批准号:
0103511 - 财政年份:2001
- 资助金额:
$ 21.66万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry of Hyperbolic 3-Dimensional Manifolds
数学科学:双曲三维流形的几何
- 批准号:
9504282 - 财政年份:1995
- 资助金额:
$ 21.66万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry of Hyperbolic 3-Manifolds
数学科学:双曲 3 流形的几何
- 批准号:
9201466 - 财政年份:1992
- 资助金额:
$ 21.66万 - 项目类别:
Continuing Grant
Mathematical Sciences: Limit Sets of Kleinian Groups and Hyperbolic Groups
数学科学:克莱因群和双曲群的极限集
- 批准号:
9001895 - 财政年份:1990
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
- 批准号:
8958665 - 财政年份:1989
- 资助金额:
$ 21.66万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Non-semisimple quantum invariants of three and four manifolds
三流形和四流形的非半简单量子不变量
- 批准号:
2304990 - 财政年份:2023
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
Surfaces and Geometry and Topology of Quantum Link Invariants
量子链接不变量的表面、几何和拓扑
- 批准号:
2244923 - 财政年份:2022
- 资助金额:
$ 21.66万 - 项目类别:
Continuing Grant
Hyperbolic Geometry and Quantum Invariants
双曲几何和量子不变量
- 批准号:
2203334 - 财政年份:2022
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
RUI: Link Homology Theories and Other Quantum Invariants
RUI:链接同源理论和其他量子不变量
- 批准号:
2204386 - 财政年份:2022
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
Knotted surface invariants from 4-dimensional topological quantum field theories
4 维拓扑量子场论的打结表面不变量
- 批准号:
532076-2019 - 财政年份:2021
- 资助金额:
$ 21.66万 - 项目类别:
Postdoctoral Fellowships
Modularity of quantum invariants of Calabi-Yau threefolds
Calabi-Yau 量子不变量的模块化性增加了三倍
- 批准号:
RGPIN-2017-03789 - 财政年份:2021
- 资助金额:
$ 21.66万 - 项目类别:
Discovery Grants Program - Individual
Adiabatic Limits of Quantum Symplectic Invariants
量子辛不变量的绝热极限
- 批准号:
2105417 - 财政年份:2021
- 资助金额:
$ 21.66万 - 项目类别:
Standard Grant
c2 invariants in quantum field theory
量子场论中的 c2 不变量
- 批准号:
562682-2021 - 财政年份:2021
- 资助金额:
$ 21.66万 - 项目类别:
University Undergraduate Student Research Awards
Modularity of quantum invariants of Calabi-Yau threefolds
Calabi-Yau 量子不变量的模块化性增加了三倍
- 批准号:
RGPIN-2017-03789 - 财政年份:2020
- 资助金额:
$ 21.66万 - 项目类别:
Discovery Grants Program - Individual
Study of the geometric structure of three manifolds by using quantum invariants
利用量子不变量研究三流形的几何结构
- 批准号:
20H01803 - 财政年份:2020
- 资助金额:
$ 21.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)