Multiscale simulation and measurement of knee joints biomechanics under physiological loading conditions
生理负荷条件下膝关节生物力学的多尺度模拟与测量
基本信息
- 批准号:RGPIN-2020-05087
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The direct economic burden of knee articular cartilage (AC) failure is $10 billion and is expected to grow over the next decade. Mechanical stimuli, such as stresses and strains, induced by physical activities, are a regulator of AC homeostasis. However, clinicians and researchers still do not know what type and level of mechanical loads are safe and effective to reduce the risk of AC degeneration. The proposed research program will address two primary limitations in this field, with broad applications for studying soft tissue mechanics in general. First, we do not have adequate tools to measure and predict how physical activities at the joint level deform AC chondrocytes at the cellular level. Much of the information currently available on chondrocyte mechanics were obtained from experiments on chondrocytes in embedded gel under static loads, which provides a controlled mechanical and biochemical environment. In the proposed research, we will develop an experimental apparatus and employ novel microscopy techniques to measure the local deformations of chondrocyte and extracellular matrix (ECM) at different zones in native AC under dynamic loading conditions. We will study the level of joint forces that promote cell biosynthesis, beginning with simple cyclic loadings and culminating in physiological loading conditions. Moreover, we will study the microscale deformations of ECM near a microscale crack in AC, to elucidate the mechanism of crack propagation in ECM. Second, we lack a biologically informed finite element (FE) model of the full knee joint that includes the chondrocyte response in the joint function. Traditional knee FE models are purely mechanical and study the acute response of AC to mechanical disturbances, such as injuries. However, cartilage failure is a chronic condition that involves tissue degeneration and cracks propagation over time. This proposal aims at developing a fiber-reinforced cartilage model and applies it into a full 3D knee FE model that includes muscles and bones (tissue level) as well as chondrocytes (cellular level). The novelty of the proposed multiscale knee FE model lies in the unique approach in linking the tissue-scale cartilage deformations to the cellular-scale chondrocyte bioactivity that accounts for the rate of cartilage growth. Such a biologically informed multiscale FE model would identify the long-term effects of applied loads on the AC function. The expected outcome of this work is to outline pathways to establish confidence in identifying physical activities that promote favorable conditions for chondrocyte function and cartilage production in cartilage. This offers a number of benefits to the society (prevented joint injuries) as well as the economy (reduced burden costs of knee joint failure treatments). In addition to technical advancements, my research group trains at least 9 HQP who help meet Canada's demand for engineers and will contribute to its economic success.
膝关节软骨(AC)失败的直接经济负担为100亿美元,预计在未来十年将继续增长。由身体活动引起的机械刺激,如应力和应变,是AC稳态的调节剂。然而,临床医生和研究人员仍然不知道什么类型和水平的机械负荷是安全和有效的,以减少AC变性的风险。拟议的研究计划将解决这一领域的两个主要限制,在一般研究软组织力学的广泛应用。首先,我们没有足够的工具来测量和预测关节水平的身体活动如何在细胞水平上使AC软骨细胞变形。目前可获得的关于软骨细胞力学的大部分信息是从静态载荷下的嵌入式凝胶中的软骨细胞的实验中获得的,其提供了受控的机械和生物化学环境。在拟议的研究中,我们将开发一个实验装置,并采用新的显微镜技术来测量局部变形的软骨细胞和细胞外基质(ECM)在不同的区域在本地AC动态负载条件下。我们将研究促进细胞生物合成的联合力的水平,从简单的循环负荷开始,在生理负荷条件下达到高潮。此外,我们将研究在AC中的微尺度裂纹附近的ECM的微尺度变形,以阐明ECM中裂纹扩展的机制。 其次,我们缺乏一个生物学上知情的有限元(FE)模型,包括关节功能中的软骨细胞反应的全膝关节。传统的膝关节有限元模型是纯机械的,研究AC对机械干扰(如损伤)的急性反应。然而,软骨衰竭是一种慢性疾病,涉及组织变性和裂纹随时间的推移而扩展。该提案旨在开发纤维增强软骨模型,并将其应用于包括肌肉和骨骼(组织水平)以及软骨细胞(细胞水平)的完整3D膝关节FE模型。所提出的多尺度膝关节有限元模型的新奇在于将组织尺度软骨变形与细胞尺度软骨细胞生物活性联系起来的独特方法,该生物活性占软骨生长的速率。这种生物学信息多尺度FE模型将识别所施加载荷对AC功能的长期影响。 这项工作的预期成果是概述了建立信心的途径,以确定促进软骨细胞功能和软骨中软骨产生的有利条件的身体活动。这为社会(预防关节损伤)和经济(减少膝关节衰竭治疗的负担成本)提供了许多好处。除了技术进步,我的研究小组还培训了至少9名HQP,他们有助于满足加拿大对工程师的需求,并将为加拿大的经济成功做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Komeili, Amin其他文献
3D Markerless asymmetry analysis in the management of adolescent idiopathic scoliosis
- DOI:
10.1186/s12891-018-2303-4 - 发表时间:
2018-10-24 - 期刊:
- 影响因子:2.3
- 作者:
Ghaneei, Maliheh;Komeili, Amin;Adeeb, Samer - 通讯作者:
Adeeb, Samer
Machine learning can appropriately classify the collimation of ventrodorsal and dorsoventral thoracic radiographic images of dogs and cats
- DOI:
10.2460/ajvr.23.03.0062 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:1
- 作者:
Tahghighi, Peyman;Appleby, Ryan B.;Komeili, Amin - 通讯作者:
Komeili, Amin
Monitoring for idiopathic scoliosis curve progression using surface topography asymmetry analysis of the torso in adolescents
- DOI:
10.1016/j.spinee.2015.01.018 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:4.5
- 作者:
Komeili, Amin;Westover, Lindsey;Adeeb, Samer - 通讯作者:
Adeeb, Samer
Effect of cracks on the local deformations of articular cartilage
- DOI:
10.1016/j.jbiomech.2020.109970 - 发表时间:
2020-09-18 - 期刊:
- 影响因子:2.4
- 作者:
Komeili, Amin;Luqman, Saad;Herzog, Walter - 通讯作者:
Herzog, Walter
Surface topography asymmetry maps categorizing external deformity in scoliosis
- DOI:
10.1016/j.spinee.2013.09.032 - 发表时间:
2014-06-01 - 期刊:
- 影响因子:4.5
- 作者:
Komeili, Amin;Westover, Lindsey M.;Adeeb, Samer - 通讯作者:
Adeeb, Samer
Komeili, Amin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Komeili, Amin', 18)}}的其他基金
Multiscale simulation and measurement of knee joints biomechanics under physiological loading conditions
生理负荷条件下膝关节生物力学的多尺度模拟与测量
- 批准号:
RGPIN-2020-05087 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Machine learning-based quality control of canine thoracic radiographs
基于机器学习的犬胸部X光片质量控制
- 批准号:
560314-2020 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Alliance Grants
Multiscale simulation and measurement of knee joints biomechanics under physiological loading conditions
生理负荷条件下膝关节生物力学的多尺度模拟与测量
- 批准号:
RGPIN-2020-05087 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Multiscale simulation and measurement of knee joints biomechanics under physiological loading conditions
生理负荷条件下膝关节生物力学的多尺度模拟与测量
- 批准号:
DGECR-2020-00498 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Launch Supplement
Machine learning-based quality control of canine thoracic radiographs
基于机器学习的犬胸部X光片质量控制
- 批准号:
560314-2020 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Alliance Grants
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于WRF-Mosaic近似不同下垫面类型改变对区域能量和水分循环影响的集合模拟
- 批准号:41775087
- 批准年份:2017
- 资助金额:68.0 万元
- 项目类别:面上项目
嵌段共聚物多级自组装的多尺度模拟
- 批准号:20974040
- 批准年份:2009
- 资助金额:33.0 万元
- 项目类别:面上项目
微扰量子色动力学方法及在强子对撞机的应用和暗物质的研究
- 批准号:10975004
- 批准年份:2009
- 资助金额:38.0 万元
- 项目类别:面上项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
- 批准号:10872219
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
Kinetic Monte Carlo 模拟薄膜生长机理的研究
- 批准号:10574059
- 批准年份:2005
- 资助金额:12.0 万元
- 项目类别:面上项目
变压吸附中真空脱附过程的传质传热规律研究
- 批准号:20576028
- 批准年份:2005
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
Multiscale modeling of spatiotemporal evolution in Barrett's esophagus
巴雷特食管时空演化的多尺度建模
- 批准号:
10659649 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Probabilistic Multiscale Modeling of the Tumor Microenvironment
肿瘤微环境的概率多尺度建模
- 批准号:
10586545 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Multiscale Biophotonics: A Platform for Interdisciplinary Biomedical Research Training and Career Development
多尺度生物光子学:跨学科生物医学研究培训和职业发展的平台
- 批准号:
10508978 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Multiscale simulation and measurement of knee joints biomechanics under physiological loading conditions
生理负荷条件下膝关节生物力学的多尺度模拟与测量
- 批准号:
RGPIN-2020-05087 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Multiscale Biophotonics: A Platform for Interdisciplinary Biomedical Research Training and Career Development
多尺度生物光子学:跨学科生物医学研究培训和职业发展的平台
- 批准号:
10703493 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Multiscale Models for Predicting Short and Long-term Outcome of Cardiac Resynchronization Therapy
用于预测心脏再同步治疗的短期和长期结果的多尺度模型
- 批准号:
10469500 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Multiscale Characterization of a Unique Class of Duplex, Multivalent IDP systems
一类独特的双工、多价 IDP 系统的多尺度表征
- 批准号:
10461032 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Multiscale Characterization of a Unique Class of Duplex, Multivalent IDP systems
一类独特的双工、多价 IDP 系统的多尺度表征
- 批准号:
10198490 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Multiscale Models for Predicting Short and Long-term Outcome of Cardiac Resynchronization Therapy
用于预测心脏再同步治疗的短期和长期结果的多尺度模型
- 批准号:
10673868 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Multiscale Characterization of a Unique Class of Duplex, Multivalent IDP systems
一类独特的双工、多价 IDP 系统的多尺度表征
- 批准号:
10663252 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别: