Machine learning-based quality control of canine thoracic radiographs
基于机器学习的犬胸部X光片质量控制
基本信息
- 批准号:560314-2020
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In animal hospitals and veterinary clinics, radiographs are taken by veterinary technicians and are often sent for a teleradiology consult by radiologists who are not present on-site. Turn around times for these studies range from 1 hour (STAT cases) to 2-3 days (non-emergency cases). Low-quality or poorly positioned radiographs may cause erroneous diagnosis and, in severe cases, may be classified as nondiagnostic by the radiologist. Therefore, quality control of the radiographs plays an important role in providing a reliable interpretation and convenient service to the patient. The training of personnel in proper positioning as well as modern x-ray units with wide exposure latitude and dynamic range help to reduce technical errors and increase quality. However, radiologists still receive radiographs with inappropriately collimated anatomy and inadequate positioning. As a result, there are a considerable number of canine thorax radiographs that render nondiagnostic or are limited in their diagnostic value. This increases the cost to veterinary clinics and clients, as well as increases radiation exposure to patients and personnel. Therefore, the importance of good image quality in radiographic studies to avoid the misleading or erroneous diagnosis, to reduce overall costs and to reduce radiation exposure, cannot be overstated. We propose a machine learning algorithm that analyzes the canine lateral thorax radiograph and evaluates its appropriateness before it is sent to the radiologist for diagnosis. We also aim to develop a sensor system that helps position the patient and reduce the room for technical error. The proposed work will benefit Canadian veterinarians as well as pet owners by 1) reducing the costs associated with repeating sedation and radiograph acquisition; 2) reducing the financial burden on the client to return to the veterinary clinic; 3) reducing technical staff availability; 3) eliminating roughly $2.5 variable cost per radiograph retake; and 4) eliminating the $50-100 telemedicine consultation fee per radiographic study if resubmitted for evaluation.
在动物医院和兽医诊所,X光照片由兽医技术人员拍摄,并经常由不在现场的放射科医生送去进行远程放射学咨询。这些研究的周转时间从1小时(统计病例)到2-3天(非紧急病例)不等。低质量或位置不佳的X光照片可能会导致错误诊断,在严重的情况下,可能会被放射科医生归类为非诊断。因此,对X线片的质量控制对于为患者提供可靠的解释和便捷的服务起着重要的作用。对适当位置的人员进行培训,以及配备具有宽曝光纬度和动态范围的现代X光机,有助于减少技术错误和提高质量。然而,放射科医生仍然会收到解剖结构不适当、定位不适当的X光片。因此,有相当数量的犬胸片没有诊断价值或诊断价值有限。这增加了兽医诊所和客户的成本,并增加了对患者和人员的辐射暴露。因此,在放射学研究中,良好的图像质量对于避免误诊或误诊、降低总体成本和减少辐射暴露的重要性怎么强调都不为过。我们提出了一种机器学习算法来分析犬的侧位胸片,并在将其发送给放射科医生进行诊断之前评估其适宜性。我们还计划开发一种传感器系统,帮助定位患者并减少技术错误的空间。拟议的工作将使加拿大兽医和宠物主人受益,因为1)减少了与重复镇静和获取X光照片相关的成本;2)减少了客户返回兽医诊所的财务负担;3)减少了技术人员的可获得性;3)每次重新拍摄X光照片可节省约2.5美元的可变成本;4)如果重新提交进行评估,则不再需要支付每项X光检查50-100美元的远程医疗咨询费。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Komeili, Amin其他文献
3D Markerless asymmetry analysis in the management of adolescent idiopathic scoliosis
- DOI:
10.1186/s12891-018-2303-4 - 发表时间:
2018-10-24 - 期刊:
- 影响因子:2.3
- 作者:
Ghaneei, Maliheh;Komeili, Amin;Adeeb, Samer - 通讯作者:
Adeeb, Samer
Machine learning can appropriately classify the collimation of ventrodorsal and dorsoventral thoracic radiographic images of dogs and cats
- DOI:
10.2460/ajvr.23.03.0062 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:1
- 作者:
Tahghighi, Peyman;Appleby, Ryan B.;Komeili, Amin - 通讯作者:
Komeili, Amin
Monitoring for idiopathic scoliosis curve progression using surface topography asymmetry analysis of the torso in adolescents
- DOI:
10.1016/j.spinee.2015.01.018 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:4.5
- 作者:
Komeili, Amin;Westover, Lindsey;Adeeb, Samer - 通讯作者:
Adeeb, Samer
Effect of cracks on the local deformations of articular cartilage
- DOI:
10.1016/j.jbiomech.2020.109970 - 发表时间:
2020-09-18 - 期刊:
- 影响因子:2.4
- 作者:
Komeili, Amin;Luqman, Saad;Herzog, Walter - 通讯作者:
Herzog, Walter
Surface topography asymmetry maps categorizing external deformity in scoliosis
- DOI:
10.1016/j.spinee.2013.09.032 - 发表时间:
2014-06-01 - 期刊:
- 影响因子:4.5
- 作者:
Komeili, Amin;Westover, Lindsey M.;Adeeb, Samer - 通讯作者:
Adeeb, Samer
Komeili, Amin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Komeili, Amin', 18)}}的其他基金
Multiscale simulation and measurement of knee joints biomechanics under physiological loading conditions
生理负荷条件下膝关节生物力学的多尺度模拟与测量
- 批准号:
RGPIN-2020-05087 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Multiscale simulation and measurement of knee joints biomechanics under physiological loading conditions
生理负荷条件下膝关节生物力学的多尺度模拟与测量
- 批准号:
RGPIN-2020-05087 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Multiscale simulation and measurement of knee joints biomechanics under physiological loading conditions
生理负荷条件下膝关节生物力学的多尺度模拟与测量
- 批准号:
RGPIN-2020-05087 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Multiscale simulation and measurement of knee joints biomechanics under physiological loading conditions
生理负荷条件下膝关节生物力学的多尺度模拟与测量
- 批准号:
DGECR-2020-00498 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Launch Supplement
Machine learning-based quality control of canine thoracic radiographs
基于机器学习的犬胸部X光片质量控制
- 批准号:
560314-2020 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Alliance Grants
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Continuing Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
- 批准号:
24K04111 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Research Grant
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Cooperative Agreement
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
- 批准号:
BB/Y513763/1 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Research Grant
SBIR Phase I: An inclusive machine learning-based digital platform to credential soft skills
SBIR 第一阶段:一个基于机器学习的包容性数字平台,用于认证软技能
- 批准号:
2317077 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
- 批准号:
EP/Y028252/1 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Fellowship
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
- 批准号:
10100967 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
EU-Funded
Machine learning-based prediction models for morbidity and mortality risk of cardiometabolic diseases in post-disaster residents by using the Fukushima longitudinal health data
利用福岛纵向健康数据基于机器学习的灾后居民心脏代谢疾病发病和死亡风险预测模型
- 批准号:
24K13482 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
- 批准号:
2339588 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Continuing Grant














{{item.name}}会员




