Integrating cancer genomics and spatial architecture of tumor infiltrating lymphocytes
整合癌症基因组学和肿瘤浸润淋巴细胞的空间结构
基本信息
- 批准号:10637960
- 负责人:
- 金额:$ 44.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-11 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressArchitectureAreaBiopsyBrainCancer PatientCellsCharacteristicsClassificationClinicalComputing MethodologiesConsumptionDataData SetDiseaseEndothelial CellsEpitheliumEvaluationFibroblastsGene ExpressionGenomicsGuidelinesHead and Neck CancerHematoxylin and Eosin Staining MethodHistopathologyImageImage AnalysisImmuneImmune responseImmunohistochemistryImmunologic MarkersImmunotherapyJointsLabelLearningLungLymphocyteMacrophageMalignant NeoplasmsManualsMapsMeasuresMethodsModelingMolecularMutationObserver VariationOutcomePathologicPathologistPathologyPatientsPerformancePhenotypePopulationPredictive ValueProceduresProxyRegional CancerReproducibilityResearchResolutionSamplingSpatial DistributionStainsStandardizationStructureTestingThe Cancer Genome AtlasTimeTissue FixationTrainingTumor-Infiltrating LymphocytesValidationautomated analysiscancer genomicscancer imagingcancer immunotherapycancer typecell typecohortcomputer frameworkconvolutional neural networkdata exchangedeep learningdeep learning modeldigitalgenomic datageometric structureimaging modalityimaging systemimmune checkpointimmune checkpoint blockadeinnovationinsertion/deletion mutationmicroscopic imagingmolecular markermultiplexed imagingneoantigensnonsynonymous mutationpathology imagingpatient prognosisprognostic valueresponsespatial relationshiptumortumor heterogeneitytumor microenvironment
项目摘要
ABSTRACT
Tumor infiltrating lymphocytes (TILs) are an important component of the immune cells that reside in the tumor
microenvironment (TME). The type and number of TILs in the TME have an impact on overall survival and are
an indicator of response to immunotherapy. Despite their importance as an indicator of a patient’s immune
response to cancer, there are multiple challenges for analyzing TILS from large population data sets involving
thousands of samples. There is a lack of methods that can automate an analysis of histopathologic images for
different features such as the spatial distribution of TILs, their topological interactions with their neighboring cells
in the TME and their association with specific clinical outcomes. Even more challenging is integrating TIL metrics
with cancer genomic data. Most other methods provide qualitive metrics of TILs and frequently rely on manual
inspection from pathologists – this approach lacks scalability and is subject to observer bias. To address these
challenges, we developed a computational framework that uses a deep learning model to identify multiple cell
types from histopathology images. The major innovation of our approach is molecular label transferring that
annotates tens of thousands of small areas extracted from histopathology images without manual inspections.
This approach is highly accurate, efficient, scalable and readily automated for the analysis of millions of images.
The objective of this project is to address a key challenge in the application of deep learning to
histopathological image: large number of labeled images as training data set. We have three specific aims to 1)
identify spatial quantification of TILs from over 10,000 histopathological images from the Cancer Genome Atlas
Project; 2) correlate TIL metrics with clonal tumor mutation burden (TMB); 3) determine association of TILs with
immune checkpoint blockade responses. This research is significant because our approach enables for a
comprehensive characterization of TILs from histopathological images at cellular level, using data that is
commonly accessible in clinical settings and can be readily integrated with cancer genomic data.
摘要
肿瘤浸润性淋巴细胞(TIL)是驻留在肿瘤中的免疫细胞的重要组分
微环境(TME)。TME中TIL的类型和数量对总生存率有影响,
对免疫疗法的反应的指标。尽管它们作为患者免疫功能的指标很重要,
针对癌症的反应,分析来自大型人群数据集的TILS存在多种挑战,
数以千计的样本。缺乏能够自动分析组织病理学图像以用于诊断的方法。
不同的特征,如TIL的空间分布,它们与相邻细胞的拓扑相互作用
及其与特定临床结局的关系。更具挑战性的是集成TIL指标
with cancer癌症genome基因组data数据.大多数其他方法提供了TIL的定性指标,并且经常依赖于人工
来自病理学家的检查-这种方法缺乏可扩展性并且受到观察者偏差的影响。解决这些
挑战,我们开发了一个计算框架,使用深度学习模型来识别多个细胞
组织病理学图像的类型。我们方法的主要创新是分子标记转移,
注释从组织病理学图像中提取的数万个小区域,而无需手动检查。
这种方法非常准确,高效,可扩展,易于自动化,可用于分析数百万张图像。
该项目的目标是解决深度学习应用中的关键挑战,
组织病理学图像:大量标记图像作为训练数据集。我们有三个具体目标:1)
从癌症基因组图谱的10,000多张组织病理学图像中确定TIL的空间定量
项目; 2)将TIL度量与克隆肿瘤突变负荷(TMB)相关联; 3)确定TIL与克隆肿瘤突变负荷(TMB)的相关性。
免疫检查点阻断反应。这项研究是重要的,因为我们的方法使一个
在细胞水平上从组织病理学图像中全面表征TIL,使用的数据是
通常在临床环境中可获得,并且可以容易地与癌症基因组数据整合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanlee P Ji其他文献
Improving bioinformatic pipelines for exome variant calling
- DOI:
10.1186/gm306 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:11.200
- 作者:
Hanlee P Ji - 通讯作者:
Hanlee P Ji
Hanlee P Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hanlee P Ji', 18)}}的其他基金
K-mer indexing for pan-genome reference annotation
用于泛基因组参考注释的 K-mer 索引
- 批准号:
10793082 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
Determine the mechanisms of acquired brain-tropism
确定获得性脑向性的机制
- 批准号:
10813237 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
Project 1 - Molecular and Cellular Determinants of High Risk Gastric Precancerous Lesions
项目1——高危胃癌癌前病变的分子和细胞决定因素
- 批准号:
10715762 - 财政年份:2023
- 资助金额:
$ 44.52万 - 项目类别:
Determine the mechanisms of acquired brain-tropism
确定获得性脑向性的机制
- 批准号:
10706493 - 财政年份:2021
- 资助金额:
$ 44.52万 - 项目类别:
Determine the mechanisms of acquired brain-tropism
确定获得性脑向性的机制
- 批准号:
10272359 - 财政年份:2021
- 资助金额:
$ 44.52万 - 项目类别:
Multimodal iterative sequencing of cancer genomes and single tumor cells
癌症基因组和单个肿瘤细胞的多模式迭代测序
- 批准号:
10363694 - 财政年份:2021
- 资助金额:
$ 44.52万 - 项目类别:
Multimodal iterative sequencing of cancer genomes and single tumor cells
癌症基因组和单个肿瘤细胞的多模式迭代测序
- 批准号:
10112576 - 财政年份:2021
- 资助金额:
$ 44.52万 - 项目类别:
Determine the mechanisms of acquired brain-tropism
确定获得性脑向性的机制
- 批准号:
10927525 - 财政年份:2021
- 资助金额:
$ 44.52万 - 项目类别:
相似海外基金
Practical Study on Disaster Countermeasure Architecture Model by Sustainable Design in Asian Flood Area
亚洲洪泛区可持续设计防灾建筑模型实践研究
- 批准号:
17K00727 - 财政年份:2017
- 资助金额:
$ 44.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional architecture of a face processing area in the common marmoset
普通狨猴面部处理区域的功能架构
- 批准号:
9764503 - 财政年份:2016
- 资助金额:
$ 44.52万 - 项目类别:
Heating and airconditioning by hypocausts in residential and representative architecture in Rome and Latium studies of a phenomenon of luxury in a favoured climatic area of the Roman Empire on the basis of selected examples.
罗马和拉齐奥的住宅和代表性建筑中的火烧供暖和空调根据选定的例子,研究了罗马帝国有利的气候地区的奢华现象。
- 批准号:
317469425 - 财政年份:2016
- 资助金额:
$ 44.52万 - 项目类别:
Research Grants
SBIR Phase II: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第二阶段:用于基于闪存的存储的面积和能源效率高、无错误层的低密度奇偶校验码解码器架构
- 批准号:
1632562 - 财政年份:2016
- 资助金额:
$ 44.52万 - 项目类别:
Standard Grant
SBIR Phase I: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第一阶段:用于基于闪存的存储的面积和能源效率高、无错误层低密度奇偶校验码解码器架构
- 批准号:
1520137 - 财政年份:2015
- 资助金额:
$ 44.52万 - 项目类别:
Standard Grant
A Study on The Spatial Setting and The Inhavitant's of The Flood Prevention Architecture in The Flood Area
洪泛区防洪建筑空间设置及居民生活研究
- 批准号:
26420620 - 财政年份:2014
- 资助金额:
$ 44.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2011
- 资助金额:
$ 44.52万 - 项目类别:
Discovery Grants Program - Individual
A FUNDAMENTAL STUDY ON UTILIZATION OF THE POST-WAR ARCHITECTURE AS URBAN REGENERATION METHOD, A case of the central area of Osaka city
战后建筑作为城市更新方法的基础研究——以大阪市中心区为例
- 批准号:
22760469 - 财政年份:2010
- 资助金额:
$ 44.52万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2010
- 资助金额:
$ 44.52万 - 项目类别:
Discovery Grants Program - Individual
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2009
- 资助金额:
$ 44.52万 - 项目类别:
Discovery Grants Program - Individual