Functors in Homotopy Theory
同伦理论中的函子
基本信息
- 批准号:RGPIN-2020-05466
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research program is concerned with functors in homotopy theory. Topology concerns itself with the shapes and global properties of physical (and theoretical) objects which we refer to as spaces. Simple examples are a donut (or its surface), the earth (or its surface), or more generally a manifold, which might model all the positions that a physical system can be in. Algebraic topology uses algebra to understand these objects. In homotopy theory, we consider the objects as if they are made out of rubber and can be continuously deformed. A functor is a way of assigning to some object, in our case often a space, another object which is often more algebraic such as a number or a set of numbers. The functor should be compatible with some other structures such as the deformations mentioned above. We will study some functors that arise in homotopy theory. First we wish to know the image of some functors. So if we start with an arbitrary space and apply one of our functors, in particular the cohomology functor, which corresponding algebraic objects can we get? This problem has a long history dating back at least to the 1960's. The target objects are always graded rings and this problem has been solved in some special cases such as polynomial rings and also when working over the rational numbers. We will study this problem modulo torsion. This simplifies the problem somewhat but not as much information is lost as when we work over the rational numbers. In particular if we have two elements a and b of our ring, we still want to know if their product is a multiple of some other elements. Over the rational numbers this is always true, but it is not always true modulo torsion. The second topic is known as Manifold Calculus. It looks at functors associated to manifolds. The problem is such a functor is often complicated, and so we resolve it into its so-called Taylor tower. This is analogous to taking a function in calculus and replacing it by its Taylor polynomials. A general function can be very complicated, but polynomials are much easier to understand. We are mostly interested in what possible towers can occur, in other words, what are the polynomials in this context.
我的研究计划是关于同伦理论中的函子。 拓扑学关注的是我们称为空间的物理(和理论)对象的形状和全局属性。简单的例子是一个甜甜圈(或其表面),地球(或其表面),或更一般的流形,它可以模拟物理系统可能处于的所有位置。 代数拓扑学使用代数来理解这些对象。在同伦理论中,我们认为物体就像是由橡胶制成的,并且可以连续变形。函子是一种赋予某个对象的方法,在我们的例子中通常是一个空间,另一个对象通常是更代数的,比如一个数或一组数。函子应该与其他一些结构相容,例如上面提到的变形。我们将研究同伦理论中出现的一些函子。 首先,我们想知道一些函子的图像。因此,如果我们从一个任意的空间开始,并应用我们的一个函子,特别是上同调函子,我们可以得到哪些相应的代数对象?这个问题由来已久,至少可以追溯到20世纪60年代。目标对象通常是分次环,并且在多项式环和有理数环等特殊情况下,这个问题已经得到了解决。我们将研究这个问题的模扭转。这在一定程度上简化了问题,但不会像处理有理数时那样丢失太多信息。特别地,如果我们有两个元素a和B,我们仍然想知道他们的乘积是否是其他元素的倍数。在有理数上,这总是正确的,但它不总是正确的模扭转。 第二个主题被称为流形微积分。它着眼于与流形相关的函子。问题是这样一个函子通常是复杂的,所以我们把它分解成所谓的泰勒塔。这类似于在微积分中取一个函数,并用它的泰勒多项式代替它。一般函数可能非常复杂,但多项式更容易理解。我们最感兴趣的是可能出现哪些塔,换句话说,在这种情况下多项式是什么。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stanley, Donald其他文献
Evidence and simplicity: why we should reject homeopathy
- DOI:
10.1111/j.1365-2753.2010.01384.x - 发表时间:
2010-04-01 - 期刊:
- 影响因子:2.4
- 作者:
Sehon, Scott;Stanley, Donald - 通讯作者:
Stanley, Donald
Stanley, Donald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stanley, Donald', 18)}}的其他基金
Functors in Homotopy Theory
同伦理论中的函子
- 批准号:
RGPIN-2020-05466 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Functors in Homotopy Theory
同伦理论中的函子
- 批准号:
RGPIN-2020-05466 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Goodwillie Calculus and Applied Topology
善意微积分和应用拓扑
- 批准号:
RGPIN-2019-07201 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Homotopy theory and derived categories
同伦理论和派生范畴
- 批准号:
261400-2013 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Homotopy theory and derived categories
同伦理论和派生范畴
- 批准号:
261400-2013 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Homotopy theory and derived categories
同伦理论和派生范畴
- 批准号:
261400-2013 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Homotopy theory and derived categories
同伦理论和派生范畴
- 批准号:
261400-2013 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Homotopy theory and derived categories
同伦理论和派生范畴
- 批准号:
261400-2013 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Homotopy theory and derived categories
同伦理论和派生范畴
- 批准号:
261400-2013 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Geometric constructions in homotopy theory
同伦理论中的几何构造
- 批准号:
261400-2008 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
- 批准号:
2405191 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
- 批准号:
2427220 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Conference: A Panorama of Homotopy theory
会议:同伦理论全景
- 批准号:
2316253 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
- 批准号:
2304797 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
- 批准号:
2305392 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Classifying spaces, proper actions and stable homotopy theory
空间分类、适当作用和稳定同伦理论
- 批准号:
EP/X038424/1 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Applications of homotopy theory to algebraic geometry and physics
同伦理论在代数几何和物理学中的应用
- 批准号:
2305373 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant