Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
基本信息
- 批准号:RGPIN-2020-05485
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Infectious diseases are a global problem worldwide. Although we have had some success in reducing disease prevalence in the Western world, many diseases continue to threaten developing nations, with over 50% of the world's population at risk for one or more transmissible infections. Emerging infections such as West Nile Virus, SARS and swine flu have threatened the West in recent years, with potential pandemics from avian influenza, MERS and others looming. Many of the effects of such interventions occur in short bursts or shocks. For example, National Immunization Days (NIDs) for measles, polio etc. occur in many developing countries over 1-2 days, twice a year. During this time, millions of children are vaccinated at once. India vaccinates 174,000,000 children in a single NID. On a smaller scale, antiretroviral treatment for HIV involves taking pills, whose duration of action is about 20 minutes long, significantly shorter than the period of hours between pills. To analyse these effects, we will develop mathematical models using impulsive differential equations, impulse extension equations and Filippov systems. These methods are used to analyse short, sharp shocks, either in the state variables or their derivatives. Impulsive differential equations are founded upon the assumption that it is often natural to assume that sufficiently short perturbations in the system occur instantaneously, since their length is negligible in comparison with the duration of the process. Impulse extension equations address the question of the validity of the assumption that the duration of short bursts can be ignored by extending the impulsive differential equation to include its continuous analogue, in order to compare the two. Filippov systems are dynamical systems with discontinuities in the derivatives. Filippov systems lend themselves to imposing an economic threshold: when the cost of a disease is sufficiently high, action will be instigated. We will use these formulations to analyse the effects of stochastic variations on the pivot points. Much work has been done on stochastic differential equations in the past; however, very little has been done on the effects of stochasticity on discontinuous approximations. E.g., for impulsive differential equations, the timing of the impulse may vary, as well as the strength of the jump. The location of Filippov thresholds may be subject to variation, which may have implications for both real and virtual equilibria that are located near the threshold. By harnessing the power of short-burst modelling, a great many problems can be analysed using novel mathematical techniques. By investigating the effect of stochastic variations on the threshold, we can develop an interface between mathematics and human behaviour. This will be useful in an applied context when dealing with biological, physical or other real-world models where thresholds are important, but the actions of humans may reduce the predictability of the outcome.
传染病是一个全球性的问题。尽管我们在降低西方世界疾病患病率方面取得了一些成功,但许多疾病继续威胁发展中国家,世界上超过50%的人口面临一种或多种传染性感染的风险。近年来,西尼罗河病毒、SARS和猪流感等新出现的传染病威胁着西方,禽流感、MERS和其他传染病的潜在大流行迫在眉睫。这种干预的许多影响都是以短时间爆发或冲击的形式出现的。例如,在许多发展中国家,每年两次,为期1-2天的麻疹、脊髓灰质炎等全国免疫日。在此期间,数百万儿童立即接种疫苗。印度在一次全国免疫日为1.74亿儿童接种疫苗。在较小的范围内,艾滋病毒的抗逆转录病毒治疗包括服用药丸,其作用时间约为20分钟,大大短于药丸之间的时间。为了分析这些影响,我们将使用脉冲微分方程,脉冲扩展方程和Filippov系统开发数学模型。这些方法用于分析状态变量或其导数中的短的、尖锐的冲击。脉冲微分方程建立在这样的假设之上,即假设系统中足够短的扰动是瞬时发生的,这是很自然的,因为它们的长度与过程的持续时间相比可以忽略不计。脉冲扩展方程解决了假设的有效性问题,即短脉冲的持续时间可以通过扩展脉冲微分方程以包括其连续模拟来忽略,以便比较两者。Filippov系统是一类导数不连续的动力系统。Filippov系统有助于强加一个经济门槛:当疾病的成本足够高时,就会采取行动。我们将使用这些公式来分析随机变化对枢轴点的影响。在过去的随机微分方程已经做了大量的工作,但是,很少有人做的随机性的影响不连续的近似。例如,在一个示例中,对于脉冲微分方程,脉冲的时间以及跳跃的强度可能会变化。Filippov阈值的位置可能会发生变化,这可能对位于阈值附近的真实的和虚拟的平衡都有影响。通过利用短突发模型的能力,可以使用新的数学技术分析很多问题。通过研究随机变化对阈值的影响,我们可以在数学和人类行为之间建立一个接口。这在处理生物、物理或其他现实世界模型的应用环境中将是有用的,其中阈值很重要,但人类的行为可能会降低结果的可预测性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Smith, Robert其他文献
An outbreak of Salmonella Typhimurium associated with the consumption of raw liver at an Eid al-Adha celebration in Wales (UK), July 2021.
- DOI:
10.1017/s0950268823001887 - 发表时间:
2023-11-30 - 期刊:
- 影响因子:4.2
- 作者:
Adamson, James P.;Sawyer, Clare;Hobson, Gemma;Clark, Emily;Fina, Laia;Orife, Oghogho;Smith, Robert;Williams, Chris;Hughes, Harriet;Jones, Allyson;Swaysland, Sarah;Somoye, Oluwaseun;Phillips, Ryan;Iqbal, Junaid;Mohammed, Israa;Karani, George;Thomas, Daniel Rhys - 通讯作者:
Thomas, Daniel Rhys
The moral space in entrepreneurship: an exploration of ethical imperatives and the moral legitimacy of being enterprising
- DOI:
10.1080/08985620701672377 - 发表时间:
2007-01-01 - 期刊:
- 影响因子:5.6
- 作者:
Anderson, Alistair R.;Smith, Robert - 通讯作者:
Smith, Robert
Protection against severe hypokalemia but impaired cardiac repolarization after intense rowing exercise in healthy humans receiving salbutamol
- DOI:
10.1152/japplphysiol.00680.2017 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:3.3
- 作者:
Atanasovska, Tania;Smith, Robert;McKenna, Michael J. - 通讯作者:
McKenna, Michael J.
Effects of pH and temperature on coupling nitritation and anammox in biofilters treating dairy wastewater
pH和温度对生物过滤器处理乳品废水中亚硝化和厌氧氨氧化耦合的影响
- DOI:
10.1016/j.ecoleng.2012.06.035 - 发表时间:
2012-10 - 期刊:
- 影响因子:3.8
- 作者:
Wang, Ziyuan;Smith, Robert;Shayya, Walid;Pei, Yuansheng - 通讯作者:
Pei, Yuansheng
Uncovering the hydride ion diffusion pathway in barium hydride via neutron spectroscopy.
- DOI:
10.1038/s41598-022-10199-8 - 发表时间:
2022-04-13 - 期刊:
- 影响因子:4.6
- 作者:
Novak, Eric;Daemen, Luke;Ramirez-Cuesta, Anibal Javier;Cheng, Yongqiang;Smith, Robert;Egami, Takeshi;Jalarvo, Niina - 通讯作者:
Jalarvo, Niina
Smith, Robert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Smith, Robert', 18)}}的其他基金
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Design and fabrication of a terahertz time domain vector network analyzer for material and device characterization
用于材料和器件表征的太赫兹时域矢量网络分析仪的设计和制造
- 批准号:
RGPIN-2022-03277 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Design and fabrication of a terahertz time domain vector network analyzer for material and device characterization
用于材料和器件表征的太赫兹时域矢量网络分析仪的设计和制造
- 批准号:
DGECR-2022-00086 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Launch Supplement
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Using past pandemics to guide COVID-19 predictions
利用过去的流行病来指导 COVID-19 预测
- 批准号:
554986-2020 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Alliance Grants
Modelling Infectious Diseases with discontinuities
对具有不连续性的传染病进行建模
- 批准号:
RGPIN-2015-05414 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Modelling Infectious Diseases with discontinuities
对具有不连续性的传染病进行建模
- 批准号:
RGPIN-2015-05414 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Modelling Infectious Diseases with discontinuities
对具有不连续性的传染病进行建模
- 批准号:
RGPIN-2015-05414 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Modelling Infectious Diseases with discontinuities
对具有不连续性的传染病进行建模
- 批准号:
RGPIN-2015-05414 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Modelling Infectious Diseases with discontinuities
对具有不连续性的传染病进行建模
- 批准号:
RGPIN-2015-05414 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
细胞内IL-1α调控沙眼衣原体诱导炎症反应机制的研究
- 批准号:81071403
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Modelling the spread of infectious diseases in forest systems
模拟森林系统中传染病的传播
- 批准号:
2836457 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Studentship
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Using Agent Based Modelling and Mobility Data to Predict and Respond to the Outbreak and Spread of Infectious Diseases: A Case Study of SARS-CoV-2 in
使用基于主体的建模和移动数据来预测和应对传染病的爆发和传播:以 SARS-CoV-2 为例
- 批准号:
2569736 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Studentship
Advancing genomic-driven infectious diseases modelling
推进基因组驱动的传染病建模
- 批准号:
DE210101344 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Early Career Researcher Award
Unifying Epidemiological and AI Modelling for Monitoring and Tracking Infectious Diseases
统一流行病学和人工智能建模以监测和跟踪传染病
- 批准号:
562934-2021 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
University Undergraduate Student Research Awards
Efficient Bayesian modelling of infectious diseases in wildlife
野生动物传染病的高效贝叶斯建模
- 批准号:
NE/V000616/1 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Research Grant
Modelling infectious diseases with stochastic discontinuities
具有随机不连续性的传染病建模
- 批准号:
RGPIN-2020-05485 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Modelling Infectious Diseases with discontinuities
对具有不连续性的传染病进行建模
- 批准号:
RGPIN-2015-05414 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Climate change, land use change, or both? How spatio-temporal modelling of Cryptococcus gattii fungus in the Pacific Northwest may reveal determinants of emerging infectious diseases
气候变化、土地利用变化,还是两者兼而有之?
- 批准号:
501245-2016 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Modelling Infectious Diseases with discontinuities
对具有不连续性的传染病进行建模
- 批准号:
RGPIN-2015-05414 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual